• Title/Summary/Keyword: 2가 철

Search Result 1,244, Processing Time 0.037 seconds

Polarographic Determination of Iron(Ⅱ), Iron(Ⅲ) and Total Iron in the Presence of DTPA (DTPA 존재하에서 폴라로그래피법에 의한 2가 철, 3가 철 및 전체 철의 정량)

  • Se Chul Sohn;Moo yul Suh;Tae Yoon Eom
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1053-1059
    • /
    • 1993
  • The determination of iron(Ⅱ), iron(Ⅲ) and total iron was studied by differential-pulse and Tast polarography in 0.1 M acetate buffer solution at pH 4.60, Half wave potentials of iron(Ⅱ)-DTPA and iron(Ⅲ)-DTPA complexes were -0.150V vs. SCE reference electrode. In the presence of DTPA the redox process of iron(Ⅱ) and iron(Ⅲ) was reversible. Linear calibration plots were obtained for iron(Ⅱ) and iron(Ⅲ) concentration of 0.2∼1.0 mM. The detection limits of iron(Ⅱ) and iron(Ⅲ)by Tast polarographic method were 0.05 mM and 0.07 mM, respectively.

  • PDF

Trichloroethylene Treatment by Zero-Valent Iron and Ferrous Iron with Iron-Reducing Bacteria - Model Development (영가철 및 철환원균을 이용한 2가 산화철 매질에 의한 TCE 제거 연구 - 모델수립)

  • Bae, Yeun-Ook;Kim, Doo-Il;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1146-1153
    • /
    • 2008
  • Numerical simulation was carried out to study the trichloroethylene (TCE) degradation by permeable reactive barrier (PRB), and revealed the effect of concentration of TCE, iron medium mass, and concentration of iron-reducing bacteria (IRB). Newly developed model was based on axial dispersion reactor model with chemical and biological reaction terms and was implemented using MATLAB ver R2006A for the numerical solutions of dispersion, convection, and reactions over column length and elapsed time. The reaction terms include reactions of TCE degradation by zero-valent iron (ZVI, Fe$^0$) and ferrous iron (Fe$^{2+}$). TCE concentration in the column inlet was maintained as 10 mg/L. Equation for Fe$^0$ degradation includes only TCE reaction term, while one for Fe$^{2+}$ has chemical and biological reaction terms with TCE and IRB, respectively. Two coupled equations eventually modeled the change of TCE concentration in a column. At Fe$^0$ column, TCE degradation rate was found to be more than 99% from 60 hours to 235 hours, and declined to less than 1% in 1,365 hours. At the Fe$^{2+}$ and IRB mixed column, TCE degradation rate was equilibrated at 85.3% after 210 hours and kept it constant. These results imply that the ferrous iron produced by IRB has lowered the TCE degradation efficiency than ZVI but it can have higher longevity.http://kci.go.kr/kciportal/ci/contents/ciConnReprerSearchPopup.kci#

Mössbauer and Infrared Absorption Spectroscopy of Tourmaline Minerals (전기석 광물의 뫼스바우어 및 적외선 흡수 분광학)

  • Kim, Hee Jong;Kim, Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.105-115
    • /
    • 1993
  • $M{\ddot{o}}ssbauer$ and Infrared absorption spectra of the iron-bearing tourmaline minerals show that the ferrous and ferric ions occupy the Y and Z octahedral sites. The Fe ions are almost ferrous, predominantly partitioning into Y site and partly take in Z site. The $Fe^{2+}$ content of the Z sites in brownish black tourmaline minerals are higher than that in blue/green tourmaline minerals. Therefore, 720 nm peak of brownish black samples is broader than that of blue/green samples in optical spectra. All of the blue/green tourmaline minerals used in experiment have only $Fe^{2+}$ ion. The IR spectra of tourmaline depend on the cation environments around OH groups, as also evidenced by their chemical analyses. There appear no difference in IR spectrum between O(1)H and O(3)H binding characters in the heat-treated samples. But the characteristic $3565cm^{-1}$ peak appears in the ferrous hydroxyl bearing silicates, where dehydroxylation temperature for OH coordinated to $Fe^{2+}$ is $700{\sim}800^{\circ}C$.

  • PDF

A Basic Study on the Removal of Iron Ion in Waste Water by the Precipitation Flotation Method (부선법에 의한 폐수중 철이온의 제거에 관한 기돌 연구)

  • 김형석;조동성;오재현
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 1993
  • This study was carried out in order to define the effective collectors and the opitimum conditions for the removal of iron ion in waste water by flotation method. The results obtained in this study are summarized as follows. Fe(II) and Fe(III) were removed effectively at pH7 and 6 respectively by using sodium lauryl sulfate, an anionic collector. The anionic collector, aeropromotor 845, removed both Fe(II) and Fe(III) effectively in pH ranges of from 5 to 9. The cationic collector, trimetyl dodecyl ammonium chloride, removed both Fe(II) and Fe(III) effectively in pH ranges from 10 to 11 and from 4 to 10, respectively. Therefore, Fe(II) and Fe(III) could be effectively removed by forming the iron hydroxide precipitates by simple pH adjustment of the solutions above precipitation point of ferrous and ferric ion by flotation method. Then, the effective pH regulator and collector were NaOH and $Na_2CO_3$,aeropromotor 845 and trimetyl dodecyl ammonium chloride, respectively.

  • PDF

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.

A Study of Hexavalent Chromium Reduction by Iron Sulfide (황화철에 의한 6가 크롬의 환원에 관한 연구)

  • Jo, Se-I;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.657-662
    • /
    • 2005
  • Iron sulfide(FeS) is significantly produced through both abiotic and biotic processes in natural sediments and pore waters. In this study, chromium(VI) reaction with iron sulfide at various initial concentrations and at pH values of 4 and 8 was conducted to better understand the interactions between Cr(VI) and Fe(II) species dissolved from iron sulfide in both the aqueous and solid phases. Also, the removal efficiency of iron sulfide was compared with zero valent iron and other iron bearing oxides such as ${\alpha}-Fe_2O_3$, ${\alpha}-FeOOH$ and $Fe_3O_4$. The Cr(VI) removal rate by iron sulfide was higher at pH 4 than at pH 8 because more dissolved Fe(II) existed at pH 4 than at pH 8. Chromium and iron(oxyhydroxide) could be identified on the iron sulfide surface with transmission microscopy imaging and energy dispersive spectroscopy. The removal capacity of iron sulfide was much higher than zero valent iron and other iron oxide minerals due to the synergic effect of hydrogen sulfide and ferrous iron.

Characteristics of Fe Reduction Process of Shallow Groundwater in a Reclaimed Area, Kim-je (김제시 간척지역 천부 지하수내 철 환원작용 특성에 대한 고찰)

  • Kim, Ji-Hoon;Cheong, Tae-Jin;Ryu, Jong-Sik;Kim, Rak-Hyeon
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • The study area is located on the western coastal region of Korea, partly had been reclaimed lands. Groundwaters of the coastal area show lower Eh and DO values (Eh: 0.57 V ${\rightarrow}$ 0.13 V, DO; 9.7 mg/l ${\rightarrow}$ 1.3 mg/l), and higher Fe concentrations (> 20 mg/l) than those of the inner land (< 0.3 mg/l), indicating that the redox condition of groundwater changes from oxic into suboxic/anoxic conditions as it flows from the inland toward the coastal area. In addition, Fe speciation of groundwater from the coastal area demonstrates that the most dissolved Fe exist as $Fe^{2+}$, reflecting that groundwater is under the anoxic condition to sufficiently occur Fe reduction. According to the result of Fe extraction with the sediment samples from three wells (A, B, C), the sediments provide enough $Fe^{3+}$ to occur the Fe reduction in the groundwater. Integrated all results of the groundwater and sediment, we infer that the Fe reduction to occur in groundwater is associated with the reclamation processes of the study area.

A Study on Iron Compounds of Scoria in The Western Seaside Area of Jeju (제주 서부 해안지역 스코리아의 철 화합물에 관한 연구)

  • Choi, Won-Jun;Ko, Jeong-Dae
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.227-232
    • /
    • 2009
  • Fe compounds of scoria samples distributed in the western seaside area of Jeju island were investigated by means of X-ray fluorescence spectroscopy (XRD), X-ray diffractometry (XRF) and $^{57}Fe$ Mossbauer spectroscopy. The samples were prepared from five parasite volcanos. We found that the samples were a typical basalt from the contents ratio of $SiO_2,\;Al_2O_3$ and Fe, and that they were silicate minerals. Underwater volcanoes scoria samples are shown only doublets in Mossbauer spectra and others scoria samples are shown sextets due to hematite and magnetite. And the balence state of Fe in the underwater volcanoes scoria samples are chiefly 2+ charge state with a little of the 2+ charge state. But the balence state of Fe in the others scoria samples are chiefly 3+ charge state.

Treatment of hazardous chemicals by Nanoscale Iron powder (나노크기 철 분말을 이용한 난분해성 유해화합물질의 처리)

  • 최승희;장윤영;황경엽;김지형
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.85-93
    • /
    • 1999
  • The destruction of hazardous chemicals such as chlorinated organic compounds(COCs) and nitroaromatic compounds(NACs) by zero-valent iron powder is one of the latest innovative technologies. In this paper. the rapid dechlorination of chlorinated compounds as well as transformation of nitro functional group to amine functional group in the nitroaromatic compounds using synthesized zero-valent iron powder with nanoscale were studied in anaerobic batch system. Nanoscale iron, characterized by high surface area to mass ratios(31.4$\textrm{m}^2$/g) and high reactivity, could quickly reacts with compounds such as TCE, chloroform, nitrobenzene, nitrotoluene, dinitrobenzene and dinitrotoluene, at concentration of 10mg/L in aqueous solution at room temperature and pressure. In this study, the TCE was dechlorinated to ethane and chloroform to methane and nitro groups in NACs were transformed to amino groups in less than 30min. These results indicated that this chemical method using nanoscale iron powder has the high potential for the remediation of soils and groundwater contaminated with hazardous toxic chemicals including chlorinated organic compounds and nitro aromatic compounds.

  • PDF

Chemical and Optical Absorption Spectroscopic Study of Colored Tourmalines (유색 전기석의 화학적 및 광학흡수 분광학적 연구)

  • Kim, Hee-Jong;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The chemical and optical absorption spectroscopic characters of pink and colorless tourmalines from San Diego mine in California, U.S.A., blue/green tourmalines from anonymous mine, Brazil, and brownis black tourmalines from Uncheon and Haksan mines in Korea have been studied using X-ray diffractometer, electron microprobe, optical absorption spectroscopy, and heat treatment. Least-squares refinements give unit cell diminsions : a = 15.96-16.01 ${\AA}$, c = 7.15-7.16 ${\AA}$ for the brownish black tourmalines, a = 15.82 - 15.87 ${\AA}$, c = 7.09 - 7.10 ${\AA}$ for pink tourmalines, and a = 15.88 - 15.94 ${\AA}$, c = 7.12 - 7.15 ${\AA}$ for blue green tourmalines. The colors of tourmalines are responsible for the transition elements. The pink color is attributed to the $Mn^{3+}$ ions, the blue-green to $Fe^{2+}$ and $Mn^{2+}$, bluish green to $Cu^{2+}$, and the brownish black to $Fe^{2+}$, $Fe^{2+}$ - $Fe^{3+}$, and $Fe^{2+}$ - $Ti^{4+}$. The $Mn^{3+}$ ions of pink color tourmalines are stabilized in the Y sites compressed along the O(1)H-O(3)H axis by Jahn-Teller distortion. Heating removes the pink or red component from tourmalines, producing the colorless stones from the pink and red ones. The bluish green samples change into the greenish blue ones and a certain yellowish green samples change into the light green ones by heat treatment. In the elbaite-schorl series, the concentration of Fe and Mn are variable depending on the color zones. The green zone is characterrized by the high content of Fe and Mn are variable depending on the color zones. The green zone is characterized by the high content of Fe, whereas the pink zone by the high content of Mn. Mn increases in deep yellow zone compared with yellow or colorless zones.

  • PDF