• Title/Summary/Keyword: 2,6-dinitroaniline

Search Result 7, Processing Time 0.022 seconds

Herbicidal Activities of Dinitroaniline Compounds in Turfgrass (Dinitroaniline계(系) 제초제(除草劑)의 잔디밭에서의 작용특성(作用特性))

  • Lee, Y.D.;Kim, S.J.;Kim, K.W.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 1994
  • This study was conducted to determine the herbicidal activity, persistance, downward movement and effect on bentgrass of 7 dinitroaniline herbicides such as benefin [N-butyl-N-ethyl-2,6-dinitro-4-(trifluoromethyl) benzenamine], beslogine [N,N-dibutyl-2,6-dinitro-4-trifluoromethylaniline], prodiamine [2,4-dinitro-$N^3$,$N^3$-dipropyl-6-(trifluoromethyl)-1,3-benzenediamine], pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine], trifluralin [2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl) benzenamine], ethalfluralin [N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl) benzenamine], and oryzalin [4-(diprop-ylamino)-3,5-dinitrobenzene-sulfonamide) together with bensulide [O,O-bis(1-methylethyl) S-[2-[(phenyl-sulfonyl) amino]ethyl]phosphorodithioate] and siduron [N-(2-methylcyclohexyl)-N'-phenylurea) as the control. In addition, distribution of pendimethalin and benefin into bentgrass was also determined. Prodiamine, benefin, and pendimethalin at the 1/16 dose of the recommended rate showed very high herbicidal activity($LD_{90}$) on Digitaria sanguinalis, but ethalfluralin and bensulide showed $LD_{90}$ at the 1/4 dose of the recommended rate, showing difference in herbicidal activities among dinitroaniline herbicides. All the herbicides except for pendimethalin had the lower herbicidal activity in sandy soil than that of clay-loam soil. Benefin, beslogine, prodiamine, oryzalin, bensulide and siduron persisted in the soil for about 50 days, but pendimethalin persisted in the soil for about 35 days, and trifluralin and ethalfluralin for about 25 days. Ethalfluralin, oryzalin and bensulide were the most mobile(downward movement) of the 9 herbicides studied. Less mobility was observed in the turfgrass condition than that of the bare soil. Beslogine bensulide prodiamine and benefin had no injury effect on bentgrass(Agrastis atolonifera L., penncross creeping bent grass). However, herbicides like oryzalin, trifluralin and pendimethalin reduced the dry weight of bentgrass by 12%, 30% and 40%, respectively. No significant difference in distribution of pendimethalin and benefin into inner part of leaves, surface and wax layer of bentgrass was observed, and thus it seems that different phytotoxic effect between pendimethalin and benefin may be attributed to different metabolism and mode of action.

  • PDF

Preparation of a New Chiral Stationary Phase Bearing Both $\pi$-Acidic and -Basic Sites from (S)-Naproxen for the Liquid Chromatographic Resolution of Enantiomers

  • Hyun Myung Ho;Jin Jong Sung;Ryoo Jae-Jeong;Jyung Kyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.497-502
    • /
    • 1994
  • A new chiral stationary phase (CSP) for the liquid chromatographic resolution of enantiomers was prepared from (S)-naproxen and 3,5-dinitroaniline. The 6-alkoxy-2-naphthyl group of the CSP was presumed to act as a ${\pi}$-basic interaction site for resolving ${\pi}$-acidic racemates while the 3,5-dinitroanilide group of the CSP was presumed to play a role as a ${\pi}$-acidic interaction site for resolving ${\pi}$-basic racemates. From the chromatographic resolution trends of N-alkylamide derivatives of ${\alpha}$-arylalkylamines on the CSP prepared, the chiral recognition mode involving the intercalation of the amide alkyl chain of the less retained enantiomers between the connecting tethers of the CSP was proposed.

Partial Reduction of Dinitroaniline Herbicide Pendimethalin by Bacillus sp. MS202 (Bacillus sp. MS202에 의한 Dinitroaniline계 제초제인 Pendimethalin의 부분환원)

  • Lee, Young-Keun;Chang, Hwa-Hyoung;Jang, Yu-Sin;Hyung, Seok-Won;Chung, Hye-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.197-202
    • /
    • 2004
  • The persistence of pendimethalin in soil and ground water has an injurious effect on ecosystem. Pendimethalin-degrading bacterium was isolated from Masan, Gyeongnam province and temporarily identified as Bacillus sp. MS202 by the analysis of API CHB50, kit, FAME, and 16S rDNA sequence. from the analysis of pnedimethalin metabolite using TLC, GC, and GC-MS, we found that the degradation of pendimethalin by Bacillus sp. MS202 did not result in the dealkylated form, but the formation of the reduced compound, 6-amino-2-nitro-N(1-ethylpropyl)-3,4-xylidine or 2- amino-6-nitro-N(1-ethylpropyl)-3,4-xylidine.

The Effect of Oryzalin on Growth and Gravitropism in Arabidopsis Roots (Oryzalin이 애기장대 뿌리 생장과 굴중성 반응에 미치는 작용)

  • Go, Jin Gyu;Park, Sun Ill;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • Oryzalin is a dinitroaniline herbicide that has been known to disrupt microtubules. Microtubules and microfilaments are components of cytoskeletons that are implicated in plant cell growth, which requires the synthesis of cellulose when cell walls elongate. In addition, microtubules are also involved in the sedimentation of statoliths, which regulate the perception of gravity in the columella cells of root tips. In this study, we investigated the effect of oryzalin on the growth and gravitropic response of Arabidopsis roots. The role of ethylene in oryzalin's effect was also examined using these roots. Treatment of oryzalin at a concentration of 10-4 M completely inhibited the roots' growth and gravitropic response. At a concentration of 10-6 M oryzalin, root growth was inhibited by 47% at 8 hr when compared to control. Gravitropic response was inhibited by about 38% compared to control in roots treated with 10-6 M oryzalin for 4 hr. To understand the role of oryzalin in the regulation of root growth and gravitropic response, we measured ethylene production in root segments treated with oryzalin. It was found that the addition of oryzalin stimulated ethylene production through the activation of ACC oxidase and ACC synthase genes, which are key components in the synthesis of ethylene. From these findings, it can be inferred that oryzalin inhibits the growth and gravitropic response of Arabidopsis roots by stimulating ethylene production. The increased ethylene alters the arrangement of the microtubules, which eventually interferes with the growth of the cell wall.

Development of Tetraploid Watermelon Using Chromosome Doubling Reagent Treatments (염색체 배수화제를 이용한 4배체 수박품종 개발)

  • Oh, Sang A;Min, Kwang Hyun;Choi, Yong Soo;Park, Sang Bin;Kim, Young Cheol;Cho, Song Mi
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.656-664
    • /
    • 2015
  • To produce high quality watermelon, three tetraploid watermelon breeding lines (‘SA03-1’, ‘SA06-1’ and ‘SB01-1’) were developed by treatment with different chromosome doubling reagents. To identify the optimal tetraploid inductive conditions, the three watermelon breeding lines were selected by counting the number of doubled chloroplasts in guard cells. Tetraploid induction rates differed depending on the genotypes and treatment with doubling reagents. However, the highest induction rate occurred with 1.0% colchicine (82.2%). These putative tetraploid lines were re-confirmed for ploidy using flow cytometric analysis and chromosome counting. The internode length of the tetraploid breeding lines was different when the leaf size was larger in all three tetraploid lines compared to their diploids. The fruit weight of the tetraploid fruits for ‘SA03-1’ and ‘SB01-1’ was lower than for their diploid, and the rind thickness and total sugar content (°Brix) of tetraploid SB01-1 were significantly different from those of its diploid. Tetraploid lines were sterile, yielded a lower number of seeds per fruit for ‘SA03-1’ (21), ‘SA06-1’ (62), and ‘SB01-1’ (34.7), and the seeds were larger and thicker than those of their diploids. These tetraploid breeding results will be useful for breeding new seedless watermelon cultivars.

Phytotoxic Effect of Herbicides on Upland Crops and Weeds (밭작물(作物) 및 잡초(雜草)에 대한 제초제(除草劑)의 약해(藥害) 약효(藥效))

  • Ryang, H.S.;Chun, J.C.;Yim, J.H.
    • Korean Journal of Weed Science
    • /
    • v.4 no.1
    • /
    • pp.69-78
    • /
    • 1984
  • This study was conducted to select herbicides effective for upland crops and to investigate the cause of crop injury in peanut cultivated with mulching. Crop such as radish (Raphanus acanthiformis Moor.), Chinese cabbage (Brassica raps L.), soybean (Glycine max Merr.), Peanut (Archis hypogaea L.), and marsh mallow (Malva olitoria Nakai) were tolerant to napropamide [2-(${\alpha}$-naphthoxy)-N, N-diethylpropionamide], alachlor [2-chloro-2', 6'-diethyl-N-(methoxymethyl) acetanilide], trifluralin (${\alpha},{\alpha},{\alpha}$-trifluoro-2, 6-dinitro-N, N-dipropylp-toluidine) and nitrofen (2,4-dichlorophenyl-p-nitrophenylether). Napropamide, diphenamide (N, N-dimethyl-2, 2-diphenylacetamide) and alachlor were safe for red pepper (Capsicum annuum L.), eggplant (Solanum melongena L. and tomato (Lycopersicon esculentum Mill.), while trifluralin, nitrofen and chlonitrofen (2,4,6-trichlorophenyl-4-nitrophenyl ether) could be used for water melon (Citrullus battich Forsk.), carrot (Daucus carota L.) and lettuce (Lactuca scariola L.) without crop injury. Out of nine major weed species studied, Capsella bursa-pastoris Medicus was the most resistant species to the herbicides tested. Napropamide and alachlor could not control P. hydropiper, while P. oleracea and C. album were tolerant to diphenamide :and alachlor, respectively. Urea herbicides such as methabenzthiazuron [3-(2-benzothiazolyl)-1,3-dimethylurea], linuron [3-(3, 4-dichlorophenyl~l-methoxy-i-methyl urea], and isoproturon [3-(4-isopropylphenyl) -1, 1-dimethylurea]gave a great injury to the crops studied. The weeding effect was greater for broadleaf weeds than for grasses. Isoproturon and linuron provided good selectivity for marsh mallow and carrot, respectively. In peanut, the crop injury caused by Four herbicides studied was greater when cultivated with mulching than when cultivated without mulching. With dinitroaniline herbicides the crop injury decreased as the gaseous herbicide was removed out of mulching. Alachlor gave little phytotoxicity to peanut grown under mulching condition and nitralin [4-(methylsuphonyl)-2, 6-dinitro-N, N-dipropylaniline] showed less toxicity to the peanut than pendimenthalin (3,4-dimethyl-2, 6-dinitro-N-1-ethyl propylaniline) and trifluralin.

  • PDF

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF