• Title/Summary/Keyword: 2,4-DCP

Search Result 102, Processing Time 0.021 seconds

Use of Plant Materials for Decontamination of Waste Water Polluted with 2,4-Dichlorophenol (2,4-Dichlorophenol로 오염된 폐수의 정화를 위한 식물체의 이용)

  • Lee, Jung-Eun;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.292-297
    • /
    • 1999
  • This study was performed to estimate the possibility of use of plant materials as catalytic agents fur the decontamination of waste waters contaminated with organic pollutants by using 2,4-dichlorophenol(2,4-DCP) as a model pollutant. Plant materials containing high peroxidase activity were selected as catalysts for the removal of 2,4-DCP. Peroxidase activity, which plant materials were containing, was measured, and the greatest peroxidase activity was observed in shepherd's purse, followed by turnip, sweet potato, Chinese cabbage and white radish. The peroxidase activity in shepherd's purse was four times higher than that of horseradish purchased in U.S.A. Using shepherd' s purse and turnip, it was investigated the effect of various factors on the decontamination of 2,4-DCP through oxidative coupling. The removal of 2,4-DCP was extremely fast, and a maximal removal could be achieved within 3 min for shepherd' s purse and 15min for turnip. The pH range was from 3.0 to 8.0 and the amount of $H_2O_2$ added was 9mM when maximal removal was achieved(over 90%). No increasing removal of 2,4-DCP was observed due to increasing the amount of $H_2O_2$ added (over 9mM). The initial concentration affected the transformation of 2,4-DCP incubated with plant materials. When turnip was used as catalytic agent, it was observed decreasing transformation of 2,4-DCP due to increasing initial concentration.

  • PDF

Regiospecificity of Reductive Dechlorination of Chlorophenols in Mono- and Di-Chlorophenol Adapted Anoxic Sediments (Mono-와 Di-Chlorophenol에 적응시킨 혐기성 저질의 탈염소 특성)

  • 공인철;이석모
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.65-76
    • /
    • 1994
  • The regiospecific potential for the reductive dechlorination of 2-, 3-, 4-, 2, 3-, 2, 4-, and 3, 4-chlorophenols (CPs) was studied in mono- and di-CP(DCP) adapted sediment slurries(10% solids). Freshwater sediments adapted to transform 2-CP dechlorinated all tested mono- and di-CPs except 4-CP without a lag period. Adaptation to 2-CP, thus, enhanced the onset of dechlorination of 3-CP and all ortho-substituted CPs tested. Sediment adapted to transform 3-CP dechlorinated all test CPs, except 4-CP and 2, 4-DCP, without a lag period. Sediment adapted to individual DCPs (2, 3-, 2, 4-, and 3, 4-DCP_ exhibited dechlorination(no lag phase) of 2-CP, 2, 3-, 2, 4-, and 3, 4-CDP. Interestingly, meta-cleavage of 3, 4-DCP in all tested adapted sediment occurred, while para-cleavage occurred in 3, 4-DCP adapted sediment. Sediment adapted to dechlorinate ortho and meta-chlorines exhibited a preference for meta following ortho-cleavage, but not for para-cleavage, while the preference for reductive dechlorination was ortho>meta>para for mono-CPs and ortho>para>meta for DCPs in unadapted freshwater anoxic sediments.

  • PDF

Development of On-Site Process for Refractory 2,4-Dichlorophenol Treatment (난분해성 2,4-Dichlorophenol 처리를 위한 원위치 처리 프로세스 개발 연구)

  • Park, Kyeong-Deok;Kim, Il-Kyu
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • This study showed that on-site ferrate(VI) solution was synthesized by wet oxidation method and applied aqueous 2,4-dichlorophenol(DCP) solution to evaluate the degradation efficiency. On-site ferrate(VI) solution was synthesized by putting $FeCl_3{\cdot}6H_2O$ in the strong alkali solution with NaClO and NaOH and applied DCP solution directly. DCP solution was extracted by the liquid-liquid method and analyzed by GC-ECD. The factors such as pH, DCP initial concentration, injected ferrate(VI) dosage, temperature were investigated. The optimum pH and temperature conditions of DCP degradation were obtained in neutral condition and $35^{\circ}C$. And the experimental results showed that DCP removal efficiency also increased with the decrease of DCP initial condition and the injected ferrate(VI) dosage.

Adsorption Characteristics of 2,4-Dichlrophenol by Magnetic Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 자성 활성탄을 이용한 2,4-디클로로페놀의 흡착특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.388-394
    • /
    • 2018
  • The removal of 2,4-dichlorophenol (2,4-dichlorophenol, 2,4-DCP) in aqueous solution was studied using the magnetic activated carbon (MAC) prepared from waste citrus peel. The adsorption characteristics of 2,4-DCP by MAC were investigated by varying the contact time, MAC dose, solution temperature, pH and 2,4-DCP concentration. The isothermal adsorption data were well explained by the Langmuir isotherm model equation and the maximum adsorption capacity calculated from the Langmuir isotherm equation was 312.5 mg/g. The adsorption kinetic data were well described by the pseudo-second-order reaction equation. The intraparticle diffusion model data indicated that both the film and intraparticle diffusion occur simultaneously during the adsorption process. The thermodynamic parameters of ${\Delta}H^o$ and ${\Delta}G^o$ have positive and negative values, respectively, indicating that the adsorption of 2,4-DCP by MAC is a spontaneous endothermic reaction. After the adsorption experiment was completed, the used MAC could be easily separated by an external magnet.

Rapid Screening Method of Peroxidase by Colorimetric Assay and Screening of 2, 4-DCP Degradable Strains (발색법에 의한 Peroxidase의 신속한 스크리닝법과 2, 4-DCP 분해균주의 스크리닝)

  • Ryu, Kang;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.484-488
    • /
    • 2008
  • Chlorinated phenols are widely used by the chemical industry as intermediate products in synthesis and previously were frequently applied to various industry fields. Peroxidases catalyze the peroxide-dependent oxidation of a range of inorganic and organic compounds. Peroxidase was shown to mineralize a variety of recalcitrant aromatic compounds and to oxidize a number of polycyclic aromatic and phenolic compounds. Among monomeric phenolic and nonphenolic compounds, peroxidase is known to oxidize its compounds. In this study, a colorimetric assay was developed to quantitatively evaluate the peroxidase activity for rapid screening. Color products of different intensity were developed proportionally to the peroxidase activity on agar plate and 96-well plate. This method correlates well with the RP-HPLC result. Using this screening method, 12 colonies of strain was screened which survived at high concentration of 2,4-DCP (1000 ppm) and with peroxidase activity for the $7^{th}$ round screening step on agar plate. These strains were utilized 2,4-DCP as a sole carbon source and produced peroxidase. After the screening test, four of the bacteria have significant better effect of COD removal on dye waste-water. COD removal of these was from 44% to 61%, respectively.

Mechanism of Phenoxy Compounds as an Endocrine Disrupter (Phenoxy계 화합물의 내분비장애작용 검색 및 기전연구)

  • 김현정;김원대;권택헌;김동현;박영인;동미숙
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.331-339
    • /
    • 2002
  • Phenoxy compounds, 2,4-Dichlorophenol acetoxy acid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a hormonal herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them wing in vivo and in vitro androgenicity assay system. Administration of 2,4-D (50 mg/kg/day, p.o.) or DCP (100 mg/kg/day, p.o.) to rats caused an increase in the tissue weight of ventral prostate, Cowpers gland and glands penis. These increase of androgen-dependent tissues were additively potentiated when rats were simultaneously treated with low dose of testosterone (1 g/kg, s.c.). 2,4-D increased about 350% of the luciferase activity in the PC cells transiently cotransfected phAR and pMMTV-Luc at concentration of $10^{-9}$ M. In 2,4-D or DCP-treated castrated rats, testosterone 6$\beta$-hydroxylase activity was not significantly modulated even when rats were co-treated with testosterone. In vitro incubation of 2,4-D and DCP with microsomes at 50 $\mu$M inhibited testosterone 6$\beta$-hydroxylase activity about 27% and 66% in rat liver microsomes, about 44% and 54% in human liver microsomes and about 50% and 45% in recombinant CYP3A4 system, respectively. The amounts of total testosterone metabolites were reduced about 33% and 75% in rat liver microsomes, 69% and 73% in human liver microsomes and 54% and 64% in recombinant CYP3A4 by 2,4-D or DCP, respectively. Therefore, the additive androgenic effect of 2,4-D or DCP by the co-administration of the low dose of testosterone may be due to the increased plasma level of testosterone by inhibiting the cytochrome P450-mediated metabolism of testosterone. These results collectively suggested that 2,4-D and DCP may act as androgenic endocrine disrupter by binding to the androgen receptor as well as by inhibiting the metabolism of testosterone.

Effects of Nitrate Ions on Advanced Oxidation of UV/H2O2 for 2,4-Dichlomphenol Degradation (UV/H2O2를 이용한 2,4-DCP의 산화에 NO3- 이온이 미치는 영향)

  • Park, Jae Han;Lee, Ji Yong;Ahn, Yoon Hee;Moon, Tae Hoon;Yim, Sung Kyun;Ko, Kwang Baik
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.319-323
    • /
    • 2007
  • The Advanced Oxidation Process (AOP) is being increasingly used to oxidize complex organic constituents in treated effluents from domestic wastewater treatment plants. Generally, ${NO_3}^--N$ concentrations ranges between 5 and 8 mg/L for biologically well-treated effluents. However, nitrate ions, ${NO_3}^-$, affects on oxidation as not only a well-known strong absorber of UV light below 250 nm of wavelength but also as an OH radical scavenger. The objective of this study was to evaluate the AOP systems for degradation of 2,4-DCP, and to delineate the effect of nitrate ions on UV oxidation of 2,4-DCP by conducting a bench-scale operation at various reaction times and initial concentrations of $H_2O_2$. The experimental results indicated that 2,4-DCP could be completely oxidized by $UV/H_2O_2$ process with an initial $H_2O_2$ concentration of 20 mg/L at a retention time of 1.0 min or longer. Nitrate ions did not show any adverse effect on 2,4-DCP oxidation at this high $H_2O_2$ concentration, and the practical initial $H_2O_2$ concentration and reaction time for the 80% oxidation turned out to be 5 mg/L and 1.0 min, respectively.

Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach (반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.723-730
    • /
    • 2017
  • The batch experiments by response surface methodology (RSM) have been applied to investigate the influences of operating parameters such as temperature, initial concentration, contact time and adsorbent dosage on 2,4-dichlorophenol (2,4-DCP) adsorption with an activated carbon prepared from waste citrus peel (WCAC). Regression equation formulated for the 2,4-DCP adsorption was represented as a function of response variables. Adequacy of the model was tested by the correlation between experimental and predicted values of the response. A fairly high value of $R^2$ (0.9921) indicated that most of the data variation was explained by the regression model. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. These results showed that the model used to fit response variables was significant and adequate to represent the relationship between the response and the independent variables. The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of 2,4-DCP on WCAC calculated from the Langmuir isotherm model was 345.49 mg/g. The rate controlling mechanism study revealed that film diffusion and intraparticle diffusion were simultaneously occurring during the adsorption process. The thermodynamic parameters indicated that the adsorption reaction of 2,4-DCP on WCAC was an endothermic and spontaneous process.

Studies on Possible Utilization of Citrus Peel as a Feed Ingredient for Broilers I. Feeding Value of Dried Citrus Peel (부로일러사료에 있어서 밀감피의 이용방안에 관한 연구 I. 밀감피 건조분말의 사료적 가치)

  • 강상열;최진호;백동훈;신원집
    • Korean Journal of Poultry Science
    • /
    • v.10 no.2
    • /
    • pp.97-101
    • /
    • 1983
  • A study was conducted to investigate possibility of utilizing dried citrus peel (DCP) as an ingridient of broiler diets. Fresh citrus peels were collected from a citrus processing plant, and were sun-dried and ground. Both chemical analyses and a feeding trial were carried out. DCP was analyzed for proximate nutrients, amino acids and some minerals. In the feeding trial, a total of 192 day-old female broiler chicks of Manor strain was divided into 16 groups of 12 birds each. Each group was fed one of the 4 different levels(0, 2, 4 and 6%) of DCP replacing an equivalent amount of wheat bran in the diet with 4 replications for 6 weeks. Body weight gain, feed intake and feed efficiency of broilers fed different levels of DCP showed no significant differences among treatments. Immediately after termination of the feeding trial, cach bird was examined for shank color using Roche's Egg Yolk Color Fan. Shank color index of birds increased consistently (P<0.05) as the level of DCP fed increased, indicating that DCP can be used as a source of pigments. It was concluded from the results that DCP could be used up to 6% in place of wheat bran in broiler diets without adverse effects.

  • PDF

Feeding di-ammonium phosphate as a phosphorous source in finishing lambs reduced excretion of phosphorus in feces without detrimental effects on animal performance

  • Koolivand, Abolfazl;Yari, Mojtaba;Khalaji, Saeed;Jonker, Arjan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.527-532
    • /
    • 2019
  • Objective: Phosphorous (P) sources with greater bioavailability might increase animal production efficiency and decrease environmental pollution. The objective of current study was to determine animal performance, nutrient digestibility, blood metabolites and fecal P concentration in finishing lambs fed a diet with either di-calcium phosphate (DCP) or di-ammonium phosphate (DAP) as a P source. Methods: Twelve 4-month-old male lambs (initial body weight $24.87{\pm}3.4kg$) were randomly allocated to a diet with either DCP or DAP (~261 g/kg of total diet P) fed ad libitum for 93 days. Diets were iso-nitrogenous and iso-energetic and had same calcium (Ca) and P concentrations. Results: The DAP contained 19.7 g/kg of dry matter (DM) Ca, 185.4 g/kg DM P and 14,623 ppm fluorine, while DCP contained 230.3 g/kg DM Ca, 195.2 g/kg DM P and 1,039 ppm fluorine. The diet with DAP contained 60 ppm fluorine while the diet with DCP contained 13 ppm fluorine. Lambs fed the diet with DAP tended to have a greater daily DM intake compared to those fed diet with DCP (p = 0.09). Lambs fed DAP had greater plasma P concentration and alkaline phosphatase activity ($p{\leq}0.01$) compared with lambs fed DCP. Dry matter and organic matter digestibility of the diets were similar between two treatments at days 60 and 90, while they were greater in lambs fed DCP (p<0.05) at day 30 of the trial. Feeding DAP increased P digestibility (58.7% vs 50.2%; p<0.05) and decreased fecal P concentration in lambs compared with feeding DCP (3.1 vs 3.8 g/kg DM; p<0.05). Conclusion: Providing ~261 g/kg of total diet P as DAP in the diet of finishing lambs improved the bioavailability of P in the body and decreased excretion of P in feces without affecting lamb performance.