• Title/Summary/Keyword: 2,2′-azobis (2,4-dimethylvaleronitrile)

Search Result 7, Processing Time 0.023 seconds

Synergistic Antioxidant Effects of Lycopene and Other Antioxidants on Methyl Linoleate Autooxidation

  • Shim, Youn-Young;Kakuda, Yukio;Shi, John
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.904-909
    • /
    • 2009
  • The beneficial effects derived from consuming natural antioxidants may not depend on the action of an individual antioxidant, but rather on the concerted action of several antioxidants naturally present. The aim of this study was to determine the concentrations and combinations of antioxidants that can produce synergistic effects (SyEs). Quantification of the lipoperoxyl radical scavenging capacity of antioxidants was carried out in a homogeneous model system where the free radicals were produced by the oxidation of methyl linoleate, initiated by the 2,2'-azobis (2,4-dimethylvaleronitrile). The greatest SyE (2.21, p<0.05) was seen in mixtures of all 4 antioxidants when used with concentrations of 15 ${\mu}M$ lycopene, 2.5 ${\mu}M$ vitamin E, 0.16 ${\mu}M$ vitamin C, and 10 ${\mu}M$ ${\beta}-carotene$. Doubling the vitamin E concentration from 2.5 to 5.0 ${\mu}M$ in the mixture with all 4 antioxidant reduced the SyE to 1.69 (p<0.05). Other combinations produced synergistic effects that ranged from 1.28 to 1.41.

Synthesis of High Molecular Weight Poly(vinyl alcohol) by Low Temperature Polymerization of Vinyl Acetate in Tertiary Butyl Alcohol and the Following Saponification (아세트산비닐의 삼차부틸알코올계 저온 중합 및 비누화에 의한 고분자량 폴리비닐알코올의 합성)

  • 류원석;한성수;최진현;유상우;홍성일
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.610-620
    • /
    • 2000
  • Vinyl acetate (VAc) was polymerized at 30, 40, and 5$0^{\circ}C$ using 2,2'-azobis (2,4-dimethylvaleronitrile) (ADMVN) and tertiary butyl alcohol (TBA) as the initiator and the solvent, respectively. High molecular weight (HMW) atactic poly(vinyl alcohol) (PVA) was prepared by saponifying the poly(vinyl acetate) (PVAc) synthesized. The effect of polymerization conditions were investigated in terms of conversion, degree of branching for acetyl group of PVAc, and molecular weight of both PVAc and PVA. The polymerization rate of VAc in TBA was proportional to the 0.49th power of ADMVN concentration in good accordance with the theoretical value of 0.5. HMW-PVA with high yield could be obtained successfully, probably due to lower polymerization temperature and decreased chain transfer reaction rate which was achieved by adopting ADMVN and TBA. PYAc having average degree of polymerization (P$_{n}$) of 10000~13000 was obtained at the conversion of 35~70%. Saponification of so prepared PVAc yielded PVA having P$_{n}$ of 2400~6100. The syndiotactic diad content increased with decreasing polymerization temperature and increasing VAc concentration due to a steric hindrance effect of TBA during polymerization.

  • PDF

Preparation of High Molecular Weight Atactic Poly(vinyl alcohol) by Photo-induced Bulk Polymerization of Vinyl Acetate

  • Lyoo, Won-Seok;Ha, Wan-Shik
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.108-115
    • /
    • 2001
  • Vinyl acetate was polymerized in ultraviolet-ray initiated bulk system at low temperatures using 2,2-azobis(2,4-dimethylvaleronitrile) (ADMVN) or 2,2-azobis(isobutyronitrile) (AIBN) as the photoinitiator, respectively. High molecular weight (HMW) poly(vinyl alcohol) (PVA) having number-average degree of polymerization ($P_n$) of 3,900-7,800 and syndiotactic diad (S-diad) content of 52.5-54.0% could be prepared by complete saponification of synthesized linear poly(vinyl acetate) (PVAc) having $P_n$ 5,900-9,400 obtained at conversion of below 30%. $P_n$ of PVA using ADMVN was larger than that of PVA using AIBN. On the other hand, conversion of the former was smaller than that of the latter, and it was found that the initiation rate of the ADMVN was lower than that of AIBN. This could be explained by a fact that the rate of photolysis of AIBN is faster than that of ADMVN due to the higher quantum yield or dissociation rate constant of AIBN than that of ADMVN. The $P_n$, syndiotacticity, and whiteness of PVA from PVAc polymerized at lower temperatures were superior to those of PVA from PVAc polymerized at higher temperatures.

  • PDF

Low Temperature Suspension Polymerization of Methyl Methacrylate for the Preparation of High Molecular Weight Poly(methyl methacrylate)/Silver Nanocomposite Microspheres

  • Yeum, Jeong-Hyun;Ghim, Han-Do;Deng, Yulin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.277-283
    • /
    • 2005
  • In order to prepare high molecular weight poly(methyl methacrylate) (PMMA)/silver nanocomposite microspheres, methyl methacrylate was suspension-polymerized in the presence of silver nanoparticles at low temperature with 2,2'-azobis(2,4-dimethylvaleronitrile) as an initiator. The rate of conversion was increased by increasing the initiator concentration. When silver nanoparticles were added, the rate of polymerization decreased slightly. High monomer conversion (about $85\%$) was obtained in spite of low polymerization temperature of $30^{\circ}C$. Under controlled conditions, PMMA/silver microspheres with various number-average degrees of polymerization (6,000-37,000) were prepared. Morphology studies revealed that except for normal suspension microspheres with a smooth surface, a golf ball-like appearance of the microspheres was observed, due to the migration and aggregation of the hydrophilic silver nanoparticles at the sublayer beneath the microsphere's surface.

Solution Polymerization of Acrylonitrile Using a Cosolvent System (DMSO/TBA) (혼합 용매계 (DMSO/TBA)를 이용한 아크릴로니트릴의 용액 중합)

  • ;;;Kim Bum-Sik
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.127-131
    • /
    • 2003
  • Acrylonitrile(AN) was solution-polymerized in dimethyl sulfoxide(DMSO) and tertiary butyl alcohol(TBA) at 30, 40, $50^\circ{C}$ using a low temperature initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN). The low temperature polymerization using ADMVN, DMSO, and TBA is to be successful in obtaining high molecular weight polyacrylonitrile(PAN) with less branches by solution polymerization. Throug a polymerization of AN in DMSO at $30^\circ{C}$, PAN having viscosity-average molecular weight$(M_v)$ of 931,000 was obtained. And then, during AN solution polymerization in DMSO and TBA using a cosolvent system the in-situ formation of microfibrillar structure has been discovered at the cosolvent composition of 24/1$(V_{DMSO}/V_{TBA})$. The simultaneous process of gelation and phase separation of long chain molecules may explain the in-situ formation of PAN fibers during polymerization.

Room Temperature Polymerization of N-vinylcarbazole in Tetrahydrofuran

  • Lyoo, Won-Seok;Kwak, Jin-Woo;Noh, Seok-Kyun;Kim, Dae-Heum;Lee, Jinwon;Kim, Nakjoong;Park, Ki-Hong;Lee, Chul-Joo
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.89-94
    • /
    • 2004
  • N-Vinylcarbazole (VCZ) was solution-polymerized in tetrahydrofuran (THF) at 25, 35, and $45^{\circ}C$ using a room temperature initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN); the effects of amount of solvent, polymerization temperature, and initiator concentration were investigated. On the whole, the experimental results corresponded to predicted ones. Room polymerization temperature using ADMVN proved to be successful in obtaining poly(N-vinylcarbazole) (PVCZ) of high molecular weight with small temperature rise during polymerization, nevertheless of free radical polymerization by azoinitiator. The polymerization rate of VCZ in THF was proportional to the 0.47 power of ADMVN concentration. The molecular weight was higher and the molecular weight distribution was narrower with PVCZ polymerized at lower temperatures. For PVCZ prepared in THF at $25^{\circ}C$ using ADMVN concentration of 0.00005 mol/mol of VCZ, weight-average molecular weight of 221,000 was obtained, with polydispersity index of 2.05, and degree of lightness converged to about 99%.

Preparation of High Molecular Weight Poly(methyl methacrylate) with High Yield by Room Temperature Suspension Polymerization of Methyl Methacrylate

  • Lyoo, Won-Seok;Noh, Seok-Kyun;Yeum, Jeong-Hyun;Kang, Gu-Chan;Ghim, Han-Do;Lee, Jinwon;Ji, Byung-Chul
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • To obtain high molecular weight (HMW) poly(methyl methacrylate) (PMMA) with high conversion, methyl methacrylate (MMA) was polymerized in suspension using a room temperature initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN), and the effects of polymerization conditions on the polymerization behavior of MMA and the molecular parameters of PMMA were investigated. On the whole, the experimental results well corresponded to the theoretically predicted tendencies. These effects could be explained by a kinetic order of ADMVN concentration calculated by an initial rate method and an activation energy difference of polymerization obtained from the Arrhenius plot. Suspension polymerization at 25℃ by adopting ADMVN proved to be successful in obtaining PMMA of HMW (number-average degree of polymerization (P/sub n/): 30,900-36,100) and of high yield (ultimate conversion of MMA into PMMA: 83-93 %) with diminishing heat generated during polymerization. The P/sub n/ and lightness were higher and polydispersity index was lower with PMMA polymerized at lower temperatures.