• 제목/요약/키워드: 2'-hydroxygenistein

검색결과 2건 처리시간 0.015초

Improving 3'-Hydroxygenistein Production in Recombinant Pichia pastoris Using Periodic Hydrogen Peroxide-Shocking Strategy

  • Wang, Tzi-Yuan;Tsai, Yi-Hsuan;Yu, I-Zen;Chang, Te-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.498-502
    • /
    • 2016
  • 3'-Hydroxygenistein can be obtained from the biotransformation of genistein by the engineered Pichia pastoris X-33 strain, which harbors a fusion gene composed of CYP57B3 from Aspergillus oryzae and a cytochrome P450 oxidoreductase gene (sCPR) from Saccharomyces cerevisiae. P. pastoris X-33 mutants with higher 3'-hydroxygenistein production were selected using a periodic hydrogen peroxide-shocking strategy. One mutant (P2-D14-5) produced 23.0 mg/l of 3'-hydroxygenistein, representing 1.87-fold more than that produced by the recombinant X-33. When using a 5 L fermenter, the P2-D14-5 mutant produced 20.3 mg/l of 3'-hydroxygenistein, indicating a high potential for industrial-scale 3'-hydroxygenistein production.

2'-Hydroxylation of Genistein Enhanced Antioxidant and Antiproliferative Activities in MCF-7 Human Breast Cancer Cells

  • Choi, Jung-Nam;Kim, Doc-Kyu;Choi, Hyung-Kyoon;Yoo, Kyung-Mi;Kim, Ji-Young;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권11호
    • /
    • pp.1348-1354
    • /
    • 2009
  • Bioconversion of the isoflavonoid genistein to 2'-hydroxygenistein (2'-HG) was performed using isoflavone 2'-hydroxylase (CYP81E1) heterologously expressed in yeast. A monohydroxylated product was analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and NMR spectrometry and was identified as 2'-HG. An initial bioconversion rate of 6% was increased up to 14% under optimized conditions. After recovery, the biological activity of 2'-HG was evaluated. Bioconverted 2'-HG showed higher antioxidant activity against 1,1-diphenyl-2-picryl hydrazine (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals than did genistein. Furthermore, 2'-HG exhibited greater antiproliferative effects in MCF-7 human breast cancer cells than did genistein. These results suggest that 2'-hydroxylation of genistein enhanced its antioxidant activity and cell cytotoxicity in MCF-7 human breast cancer cells.