• Title/Summary/Keyword: 1kW class

Search Result 412, Processing Time 0.034 seconds

Development of Independent 1 kW-class PEMFC-Battery Hybrid System for a Building (건물용 독립형 1kW급 PEMFC-배터리 하이브리드 시스템 기술 개발)

  • Yang, Seug Ran;Kim, Jung Suk;Choi, Mi Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • We have developed 1 kW-class PEMFC-battery hybrid system independently powering to the building, through the process of system design, current load characteristics analysis, power system configuration for demonstration site and performance evaluation. In order to use the fuel cell and battery as the hybrid type, a control technology for the charging/discharging decision and charging speed of the battery is required rather than using fuel cell. Also output power distribution between PEMFC and the battery is a core of energy management technology. It is confirmed that it is possible to supply independently 1kW powering the building to ensure optimal energy management through the power control experiment of the hybrid system.

Physical and Mechanical Properties of Cements for Borehole and Stability Analysis of Cement Sheath (관정 시멘팅 재료의 물리역학물성 및 시멘트층의 안정성 분석)

  • Kim, Kideok;Lee, Hikweon;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • We carried out laboratory material tests on two cements (KS-1 ordinary Portland and Class G) with changing W/S (Water/Solid) and the content of fly ash in order to evaluate their physical and mechanical properties. The specimens of KS-1 ordinary Portland cement were prepared with varying W/S (Solid=cement) in weight, while those of Class G cement were prepared with changing the content of fly ash in volume but maintaining W/S (Solid=cement+fly ash). The results of the material tests show that as the W/S in KS-1 ordinary Portland cement and the content of fly ash in Class G cement increase, the properties (density, sonic wave velocity, elastic constants, compressive and tensile strengths, thermal conductivity) decrease, but porosity and specific heat increase. In addition, an increase in confining pressure and in the content of fly ash leads to plastic failure behavior of the cements. The laboratory data were then used in a stability analysis of cement sheath for which an analytical solution for computing the stress distribution induced around a cased, cemented well was employed. The analysis was carried out with varying the injection well parameters such as thickness of casing and cement, injection pressure, dip and dip direction of injection well, and depth of injection well. The analysis results show that cement sheath is stable in the cases of relatively lower injection pressures and inclined and horizontal wells. However, in the other cases, it is damaged by mainly tensile failure.

Development Status of High Enthalpy Plasma Equipment (전북대 고온플라즈마 설비 구축 및 응용연구 소개)

  • Choi, Chea-Hong;Lee, Mi-Yun;Kim, Min-Ho;Hong, Bong-Guen;Seo, Jun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.694-696
    • /
    • 2011
  • The high enthalpy plasma research center in Chonbuk national university is under construction for four types of plasma equipments. The equipments are 1set of 0.4 MW class enhanced Huels type plasma equipment, 1 set of 2.4 MW class enhanced Huels type plasma quipment, 1 set of 60 kW RF plasma equipment and 1 set of 200 kW RF plasma equipment. 60kW RF plasma system is R&D and pilot scale production equipment of nano powder synthesis and plasma spray coating. 200kW RF plasma system is mass production equipment with high power capacity of nano powder synthesis. 0.4MW plasma system can be applied to the ground test facility for material testing under re-entry conditions for space vehicles.

  • PDF

Site Plan of High-enthalpy Plasma Research Center in Chonbuk National University (전북대학교 고온플라즈마응용연구센터 Site Plan)

  • Kim, Min-Ho;Choi, Seong-Man;Seo, Jun-Ho;Choi, Chea-Hong;Hong, Bong-Guen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.764-767
    • /
    • 2010
  • The high enthalpy plasma research center in Chonbuk national university is under construction for MW class plasma wind tunnel. Four types of plasma equipment will be installed in the research center. The equipments are 1set of 0.4 MW class enhanced Huels type plasma equipment, 1 set of 2.4 MW class enhanced Huels type plasma equipment, 1 set of 60 kW RF plasma equipment and 1 set of 200 kW RF plasma equipment. And electrical, water and gas utilities to assistant plasma equipments are under construction. The research center consists of experiment building, research building, power supply building, air supply building, cooling tower foundation.

  • PDF

ON A GROUP CLOSELY RELATED WITH THE AUTOMORPHIC LANGLANDS GROUP

  • Ikeda, Kazim Ilhan
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.21-59
    • /
    • 2020
  • Let LK denote the hypothetical automorphic Langlands group of a number field K. In our recent study, we briefly introduced a certain unconditional non-commutative topological group ${\mathfrak{W}}{\mathfrak{A}}{\frac{\varphi}{K}}$, called the Weil-Arthur idèle group of K, which, assuming the existence of LK, comes equipped with a natural topological group homomorphism $NR{\frac{\varphi}{K}^{Langlands}}$ : ${\mathfrak{W}}{\mathfrak{A}}{\frac{\varphi}{K}}$ → LK that we called the "Langlands form" of the global nonabelian norm-residue symbol of K. In this work, we present a detailed construction of ${\mathfrak{W}}{\mathfrak{A}}{\frac{\varphi}{K}}$ and $NR{\frac{\varphi}{K}^{Langlands}}$ : ${\mathfrak{W}}{\mathfrak{A}}{\frac{\varphi}{K}}$ → LK, and discuss their basic properties.

Development Progress of a 300 kW-class HTS DC Induction Furnace (300 kW 급 대용량 초전도 직류 유도가열로 개발)

  • Choi, Jongho;Go, Byeong-Soo;Park, Hee-Chul;Park, Minwon;Yu, In-Keun;Kim, Seokho;Sim, Kideok;Jo, Sangho;Jo, Jinsik
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1112-1113
    • /
    • 2015
  • In the end of 2014, Changwon National University and TECHSTEEL Co., Ltd. had initiated a project on the development of a 300 kW-class HTS DC Induction Furnace(HTS DC IF) for preheating non-ferrous metal billets funded by the Korea Institute of Energy Technology Evaluation and Planning for 3 years. This is the one of the most realistic commercial machines applying the coated conductors. In this paper, the development progress of a 300 kW-class HTS DC IF was introduced. The major characteristics of the furnace including its capacity, structure and operation scheme were presented. For ensuring the successful design, a pre-validation study was performed through the electromagnetic, heat transfer and solid mechanical analysis using a multi-physics FEM tool. The aluminum billet was heated up to $540^{\circ}C$ under 1 T of the magnetic flux density at the center of the billet, and the simulation results were described in detail.

  • PDF

A Study on the De-Icing Performance Evaluation and Design Guide for Ice Class Louver of the Vessels Operating in Cold Region (빙해선박 아이스 클래스 루버의 해빙(de-icing) 성능평가 및 설계기준에 관한 연구)

  • Jung, Young-Jun;Seo, Young-Kyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.323-329
    • /
    • 2015
  • For the design guide of a vessel operating in cold region, numerical analysis was carried out to evaluate the ice class louver which installed the heating cables by using ANSYS 13.0 CFX. The numerical analysis was performed by considering Unsteady Reynolds Averaged Navier Stokes (RANS) equation. This study based on the experimental results of ‘The Cryogenic Performance Evaluation for the Excellent De-icing Ice Class Louver’ in KRISO. For validation of the numerical analysis results, the cold chamber experimental data measured by the heat sensors in certain location of the ice class louver was used. The external environmental temperature which varies from 0℃ to –30℃ was considered in numerical analysis. Also the design guide for optimum de-icing presented through heating cable power capacity(33 W/m, 45 W/m, 66 W/m), location of the heating cable(front, center, behind on the blade) and relative velocity(1 m/s, 4 m/s, 7 m/s).

Two Extensions of a Star Operation on D to the Polynomial Ring D[X]

  • Chang, Gyu Whan;Kim, Hwankoo
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗ (D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ∩P∈∗w-Max(D) ADP [X] and A[∗] = (∩P∈∗w-Max(D) AD[X]P[X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ≅ Cl[∗](D[X]) if and only if D is integrally closed.

A CMOS Band-Pass Delta Sigma Modulator and Power Amplifier for Class-S Amplifier Applications (S급 전력 증폭기 응용을 위한 CMOS 대역 통과델타 시그마 변조기 및 전력증폭기)

  • Lee, Yong-Hwan;Kim, Min-Woo;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • A CMOS band-pass delta-sigma modulator(BPDSM) and cascode class-E power amplifier have been developed CMOS for Class-S power amplifier applications. The BPDSM is operating at 1-GHz sampling frequency, which converts a 250-MHz sinusoidal signal to a pulse-width modulated digital signal without the quantization noise. The BPDSM shows a 25-dB SQNR(Signal to Quantization Noise Ratio) and consumes a power of 24 mW at an 1.2-V supply voltage. The class-E power amplifier exhibits an 18.1 dBm of the maximum output power with a 25% drain efficiency at a 3.3-V supply voltage. The BPDSM and class-E PA were fabricated in the Dongbu's 110-nm CMOS process.

Development of 1 kW class PEFC co-generation system for buildings (1kW 급 건물용 연료전지 시스템 개발 현황)

  • Jun, Hee-Kwon;Hwang, Jung-Tae;Lee, Kap-Sik;Choi, Choeng-Hoon;Lee, Dong-Hwal;Bae, Joon-Kang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.328-330
    • /
    • 2009
  • 1 kW class Polymer Electrolyte Fuel Cell(PEFC) co-generation systems have been developed from 2001 and evaluated for improvement of efficiency, durability and reliability of the system. This paper introduce new version system including with excellent reliability, durability and user friendly applications. Its electrical and overall efficiency showed 35 % and 80 %, respectively, and noise level of the system was less than 45 dB. In addition, this system have various functions such as load change, $N_2$ less purge, low emission and low temperature operation ($-15^{\circ}C$) through development of operation logic. This system was designed for convenient installation in indoor and outdoor due to the compactness of size and the separation of electrical and heat recovery units, which means a user can select the size of heat recovery unit.

  • PDF