• Title/Summary/Keyword: 1d-CNN

Search Result 130, Processing Time 0.032 seconds

The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification (CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석)

  • Kwak, Taehong;Song, Ahram;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.959-971
    • /
    • 2019
  • CNN (Convolutional Neural Network) is one representative deep learning algorithm, which can extract high-level spatial and spectral features, and has been applied for hyperspectral image classification. However, one significant drawback behind the application of CNNs in hyperspectral images is the high dimensionality of the data, which increases the training time and processing complexity. To address this problem, several CNN based hyperspectral image classification studies have exploited PCA (Principal Component Analysis) for dimensionality reduction. One limitation to this is that the spectral information of the original image can be lost through PCA. Although it is clear that the use of PCA affects the accuracy and the CNN training time, the impact of PCA for CNN based hyperspectral image classification has been understudied. The purpose of this study is to analyze the quantitative effect of PCA in CNN for hyperspectral image classification. The hyperspectral images were first transformed through PCA and applied into the CNN model by varying the size of the reduced dimensionality. In addition, 2D-CNN and 3D-CNN frameworks were applied to analyze the sensitivity of the PCA with respect to the convolution kernel in the model. Experimental results were evaluated based on classification accuracy, learning time, variance ratio, and training process. The size of the reduced dimensionality was the most efficient when the explained variance ratio recorded 99.7%~99.8%. Since the 3D kernel had higher classification accuracy in the original-CNN than the PCA-CNN in comparison to the 2D-CNN, the results revealed that the dimensionality reduction was relatively less effective in 3D kernel.

CNN Based 2D and 2.5D Face Recognition For Home Security System (홈보안 시스템을 위한 CNN 기반 2D와 2.5D 얼굴 인식)

  • MaYing, MaYing;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1207-1214
    • /
    • 2019
  • Technologies of the 4th industrial revolution have been unknowingly seeping into our lives. Many IoT based home security systems are using the convolutional neural network(CNN) as good biometrics to recognize a face and protect home and family from intruders since CNN has demonstrated its excellent ability in image recognition. In this paper, three layouts of CNN for 2D and 2.5D image of small dataset with various input image size and filter size are explored. The simulation results show that the layout of CNN with 50*50 input size of 2.5D image, 2 convolution and max pooling layer, and 3*3 filter size for small dataset of 2.5D image is optimal for a home security system with recognition accuracy of 0.966. In addition, the longest CPU time consumption for one input image is 0.057S. The proposed layout of CNN for a face recognition is suitable to control the actuators in the home security system because a home security system requires good face recognition and short recognition time.

An Untrained Person's Posture Estimation Scheme by Exploiting a Single 24GHz FMCW Radar and 2D CNN (단일 24GHz FMCW 레이더 및 2D CNN을 이용하여 학습되지 않은 요구조자의 자세 추정 기법)

  • Kyongseok Jang;Junhao Zhou;Chao Sun;Youngok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.897-907
    • /
    • 2023
  • Purpose: In this study, We aim to estimate a untrained person's three postures using a 2D CNN model which is trained with minimal FFT data collected by a 24GHz FMCW radar. Method: In an indoor space, we collected FFT data for three distinct postures (standing, sitting, and lying) from three different individuals. To apply this data to a 2D CNN model, we first converted the collected data into 2D images. These images were then trained using the 2D CNN model to recognize the distinct features of each posture. Following the training, we evaluated the model's accuracy in differentiating the posture features across various individuals. Result: According to the experimental results, the average accuracy of the proposed scheme for the three postures was shown to be a 89.99% and it outperforms the conventional 1D CNN and the SVM schemes. Conclusion: In this study, we aim to estimate any person's three postures using a 2D CNN model and a 24GHz FMCW radar for disastrous situations in indoor. it is shown that the different posture of any persons can be accurately estimated even though his or her data is not used for training the AI model.

1-D CNN deep learning of impedance signals for damage monitoring in concrete anchorage

  • Quoc-Bao Ta;Quang-Quang Pham;Ngoc-Lan Pham;Jeong-Tae Kim
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.43-62
    • /
    • 2023
  • Damage monitoring is a prerequisite step to ensure the safety and performance of concrete structures. Smart aggregate (SA) technique has been proven for its advantage to detect early-stage internal cracks in concrete. In this study, a 1-D CNN-based method is developed for autonomously classifying the damage feature in a concrete anchorage zone using the raw impedance signatures of the embedded SA sensor. Firstly, an overview of the developed method is presented. The fundamental theory of the SA technique is outlined. Also, a 1-D CNN classification model using the impedance signals is constructed. Secondly, the experiment on the SA-embedded concrete anchorage zone is carried out, and the impedance signals of the SA sensor are recorded under different applied force levels. Finally, the feasibility of the developed 1-D CNN model is examined to classify concrete damage features via noise-contaminated signals. The results show that the developed method can accurately classify the damaged features in the concrete anchorage zone.

A Study on Estimation of Lying Posture at Multiple Angles Using Single Frequency Modulated Continuous Wave (FMCW) Radar-Based CNNs (FMCW 레이더 및 CNN을 이용한 다양한 각도로 누운 자세 추정 연구)

  • Jang, Kyongseok;Zhou, Junhao;Kim, Youngok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.349-350
    • /
    • 2023
  • 본 논문에서는 FMCW(Frequency Modulated Continuous Wave) 레이더를 사용하여 재난 상황에서 누워 있는 사람의 다양한 각도의 자세를 통해 사람의 상태를 파악하거나 위치를 추정하고자하였다. 사람의 세 가지 누운 자세 데이터를 전처리하고 이미지로 변환한 데이터를 CNN(Convolutional Neural Network) 1D 모델로 학습시켜 누운 자세를 다양한 각도에서 구별할 수 있는지 분석하여 확인하고자하였으며, 분석 결과 CNN 1D 모델은 99.27%의 정확도를 보였다.

  • PDF

A Study on Applying a Model Using 1D CNN-LSTM to the RUL Prediction of HDD (하드디스크의 잔존 수명 예측에 1D CNN-LSTM 을 이용한 모델 적용 연구)

  • Seo, Yangjin
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.978-981
    • /
    • 2020
  • 제품이나 부품의 잔존 수명을 정확하게 예측할 수 있다면 고장이나 중단으로 인한 손실을 방지하는 것이 가능해질 것이다. 제품의 잔존 수명은 시계열 데이터 분석을 통해 예측될 수 있으며, 최근에는 딥러닝을 이용한 잔존 수명 예측 연구가 활발하게 진행되고 있다. 본 연구에서 우리는 컴퓨터 기반 시스템의 주요 고장 요소가 되고 있는 하드디스크의 잔존 수명을 예측하는 문제에 1D CNN-LSTM 을 이용한 모델을 적용하고, RMSE 와 R-Square 값을 이용해 적용한 모델의 성능을 평가하였다.

Microcontroller-based Gesture Recognition using 1D CNN (1D CNN을 이용한 마이크로컨트롤러기반 제스처 인식)

  • Kim, Ji-Hye;Choi, Kwon-Taeg
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.219-220
    • /
    • 2021
  • 본 논문에서는 마이크로컨트롤러에서 6축 IMU 센서를 사용한 제스쳐를 인식하기 위한 최적화된 학습 방법을 제안한다. 6축 센서값을 119번 샘플링할 경우 특징 차원이 매우 크기 때문에 다층 신경망을 이용할 경우 학습파라미터가 마이크로컨트롤러의 메모리 허용량을 초과하게 된다. 본 논문은 성능은 유지하며 학습 파라미터 개수를 효과적으로 줄이기 위한 마이크로컨트롤러에 최적화된 1D CNN을 제안한다.

  • PDF

Performance Evaluation of Machine Learning and Deep Learning Algorithms in Crop Classification: Impact of Hyper-parameters and Training Sample Size (작물분류에서 기계학습 및 딥러닝 알고리즘의 분류 성능 평가: 하이퍼파라미터와 훈련자료 크기의 영향 분석)

  • Kim, Yeseul;Kwak, Geun-Ho;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.811-827
    • /
    • 2018
  • The purpose of this study is to compare machine learning algorithm and deep learning algorithm in crop classification using multi-temporal remote sensing data. For this, impacts of machine learning and deep learning algorithms on (a) hyper-parameter and (2) training sample size were compared and analyzed for Haenam-gun, Korea and Illinois State, USA. In the comparison experiment, support vector machine (SVM) was applied as machine learning algorithm and convolutional neural network (CNN) was applied as deep learning algorithm. In particular, 2D-CNN considering 2-dimensional spatial information and 3D-CNN with extended time dimension from 2D-CNN were applied as CNN. As a result of the experiment, it was found that the hyper-parameter values of CNN, considering various hyper-parameter, defined in the two study areas were similar compared with SVM. Based on this result, although it takes much time to optimize the model in CNN, it is considered that it is possible to apply transfer learning that can extend optimized CNN model to other regions. Then, in the experiment results with various training sample size, the impact of that on CNN was larger than SVM. In particular, this impact was exaggerated in Illinois State with heterogeneous spatial patterns. In addition, the lowest classification performance of 3D-CNN was presented in Illinois State, which is considered to be due to over-fitting as complexity of the model. That is, the classification performance was relatively degraded due to heterogeneous patterns and noise effect of input data, although the training accuracy of 3D-CNN model was high. This result simply that a proper classification algorithms should be selected considering spatial characteristics of study areas. Also, a large amount of training samples is necessary to guarantee higher classification performance in CNN, particularly in 3D-CNN.

Bird sounds classification by combining PNCC and robust Mel-log filter bank features (PNCC와 robust Mel-log filter bank 특징을 결합한 조류 울음소리 분류)

  • Badi, Alzahra;Ko, Kyungdeuk;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • In this paper, combining features is proposed as a way to enhance the classification accuracy of sounds under noisy environments using the CNN (Convolutional Neural Network) structure. A robust log Mel-filter bank using Wiener filter and PNCCs (Power Normalized Cepstral Coefficients) are extracted to form a 2-dimensional feature that is used as input to the CNN structure. An ebird database is used to classify 43 types of bird species in their natural environment. To evaluate the performance of the combined features under noisy environments, the database is augmented with 3 types of noise under 4 different SNRs (Signal to Noise Ratios) (20 dB, 10 dB, 5 dB, 0 dB). The combined feature is compared to the log Mel-filter bank with and without incorporating the Wiener filter and the PNCCs. The combined feature is shown to outperform the other mentioned features under clean environments with a 1.34 % increase in overall average accuracy. Additionally, the accuracy under noisy environments at the 4 SNR levels is increased by 1.06 % and 0.65 % for shop and schoolyard noise backgrounds, respectively.

A Sketch-based 3D Object Retrieval Approach for Augmented Reality Models Using Deep Learning

  • Ji, Myunggeun;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • Retrieving a 3D model from a 3D database and augmenting the retrieved model in the Augmented Reality system simultaneously became an issue in developing the plausible AR environments in a convenient fashion. It is considered that the sketch-based 3D object retrieval is an intuitive way for searching 3D objects based on human-drawn sketches as query. In this paper, we propose a novel deep learning based approach of retrieving a sketch-based 3D object as for an Augmented Reality Model. For this work, we introduce a new method which uses Sketch CNN, Wasserstein CNN and Wasserstein center loss for retrieving a sketch-based 3D object. Especially, Wasserstein center loss is used for learning the center of each object category and reducing the Wasserstein distance between center and features of the same category. The proposed 3D object retrieval and augmentation consist of three major steps as follows. Firstly, Wasserstein CNN extracts 2D images taken from various directions of 3D object using CNN, and extracts features of 3D data by computing the Wasserstein barycenters of features of each image. Secondly, the features of the sketch are extracted using a separate Sketch CNN. Finally, we adopt sketch-based object matching method to localize the natural marker of the images to register a 3D virtual object in AR system. Using the detected marker, the retrieved 3D virtual object is augmented in AR system automatically. By the experiments, we prove that the proposed method is efficiency for retrieving and augmenting objects.