• Title/Summary/Keyword: 1H-NMR spectroscopy

Search Result 576, Processing Time 0.029 seconds

The Solubilization Site of Some Phenyl Alkanols in Aqueous Sodium Dodecylsulfate Micelle (몇가지 페닐 알카놀의 Sodium Dodeylsulfate 수용액 미셀내에서의 가용화 위치)

  • Jeong, Jong Jae;Gang, Jeong Bu;Lee, Gyeong Hui
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.194-199
    • /
    • 1994
  • The solubilization sites of some phenyl alkanols such as phenol, benzyl alcohol, phenethyl alcohol, 3-phenyl-1-propanol solubilized in 0.2 M aqueous sodium dodecylsulfate micelle solution was studied by two dimensional heteronuclear correlation spectroscopy (2D C-H COSY). The results show more quantitative and clear solubilization sites in the SDS micelle than previous results using $^1H$-NMR spectrum integration. We found that most of the phenyl alkanols penetrate into the core of SDS micelle, and the insertion depth was 6.5∼7.0 methylene units from ${\alpha}$-methylene.

  • PDF

Comparison of in Vivo, in Vitro 3T MR Spectroscopy and Proton NMR Spectroscopy for the Fluid from Cystic Tumor: Preliminary Study (낭성 종양의 체액에 대한 생체내, 생체외 3T 양성자 자기공명분 광법과 양성자 핵자기공명기법의 비교: Preliminary Study)

  • Lee, Hui-Joong;Kim, Jong-Yeol;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2008
  • Purpose : The aim of this study is to determine possibility of application of in vivo proton ($^1H$) magnetic resonance spectroscopy (MRS) in distinguishing cystic mass arising around pancreas by comparison of in vivo MRS, in vitro MRS using 3T MR machine, based on nuclear magnetic resonance (NMR). Materials and Methods : We obtained spectra of in vivo MRS, in vitro MRS and NMR from abdominal mass arising around pancreas (mucinous cystic neoplasm=5, intraductal papillary mucin producing tumor=5, pseudocyst=1, and lymphangioma=1). We estimated existence of peak of in vivo MRS, and in vitro MRS concordant to that of NMR. We also evaluated differential peak for predicting specific disease. Results : Correlation of presence of peak with NMR showed showed sensitivity of 29.6%, specificity of 82.6% and accuracy of 67.7% on in vivo MRS (p = 0.096, McNemar test), sensitivity of 57.1% and specificity of 92.6% and accuracy of 82.3% on in vitro MRS (p = 0.362, McNemar test). The spectra of NMR for IPMT showed more frequent peaks at 3.5-4.0 ppm (p=0.026). Conclusion : Although chemical analysis, using NMR could be regarded as possible tool to differentiate cystic masses, in vivo and in vitro MRS need further technical evolution for clinical application.

  • PDF

Quantitative Analysis of Quality Control of Natural Medicine by $^1H-NMR$ Spectrometry-Quantitative Analysis of Hesperidin from Citrus unshiu ($^1H-NMR$을 이용한 한약재의 품질 평가 방법 확립;진피의 Hesperidin 정량분석)

  • Ahn, Eun-Mi;Baek, Mi-Young
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Objectives : In this paper, we describe that $^1H-NMR$ spectroscopy may be superior to the conventional HPLC for the quantitative analysis of hesperidin from Citrus unshiu. Methods : $^1H-NMR$ spectra (400 MHz) were recorded in $DMSO-d_6$ using a Varian UNITY Inova AS 400 FT NMR spectrometer. One hundred milligram of powdered Citrus unshiu was weighed out and mixed with 1 ml of $DMSO-d_6$ with sonication for 30 min (room temperature). The extracts were filtrated through a 0.45 ${\mu}m$ PVDF filter and 0.5 ml of filtrated extract used for quantitative $^1H-NMR$ measurement (added 1 mg of dimethyl terephthalate as internal standard). The quantity of hesperidin was calculated by the ratio of the intensity of the compound to the known amount of internal standard. For HPLC analysis, the half gram of plant material was extracted with 60 ml of MeOH for 2 hours. The extracts were made 100 ml volume and analyzed by a Waters HPLC system using a YMC ODS column. The total flow rate was 1.0 ml/min with a sample volume 10 ${\mu}l$ and UV detection at 280nm. Results : The contents of hesperidin in Citrus unshiu was determined $5.33{\pm}0.06$% in the quantitative $^1H-NMR$ method and $5.15{\pm}0.12%$ in HPLC method. Using the quantitative $^1H-NMR$ the contents of hesperidin can be determined in much shorter time than the conventional HPLC measurements. Conclusions : From those results, the advantages of quantitative $^1H-NMR$ analysis are that can be analyzed to identify and quantify, and no reference compounds required for calibration curve. Besides, it allows rapid and simple quantification for hesperidin with an analysis time for only 10 min without any pre-purification steps.

  • PDF

Solid-State $^1H$ and $^{29}Si$ NMR Studies of Silicate and Borosilicate Gel to Glass Conversion

  • 양경화;우애자
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.696-699
    • /
    • 1996
  • Silicate and borosilicate gels were prepared by the sol-gel process and thermally treated in the 150-850 ℃ temperature range. Solid-state 1H MAS and 29Si CP/MAS NMR spectroscopy were used to investigate the effects of heat treatments on the silicate gel to glass conversion process. The 1H NMR isotropic chemical shifts and the relative intensities of hydrogen bonded and isolated silanol groups have been used to access the information concerning the dehydration process on the silicate gel surface. The 29Si NMR isotropic chemical shifts affected by the local silicon environment have been used to determine the degree of crosslinking, i.e. the number of siloxane bonds. These NMR results suggest that the silicate gel to glass conversion process is occurred by two stages which are dependent on the temperature; (1) the formation of particles up to 450 ℃ and (2) the formation of large particles by aggregation of each separated single particle above 450 ℃. In addition, the effects of B atom on the formation of borosiloxane bonds in borosilicates have been discussed.

Isolation and Structure of $[Ph_3P(OH)]^+[ $N_3$]^-$ ($[Ph_3P(OH)]^+[ $N_3$^-$의 분리 및 구조)

  • Beom Jun Lee;Won Seok Han;Soon Won Lee
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.141-144
    • /
    • 2001
  • From the reaction of Na[Ga(N₃)₄] with PPh₃, an ionic compound [Ph₃P(OH)]/sup +/[N₃]/sup -/ (1) was isolated. Compound 1 was characterized by spectroscopy (¹H-NMR, /sup 13C{¹H}-NMR, and IR) and X-ray diffraction. Crystallographic data for 1 : orthorhombic space group P2₁2₁2₁, a = 10.491 (4) Å, b=11.603(5)Å, c=13.149(5)Å, Z=4, R(wR₂)=0.0547(0.0978).

  • PDF

Synthesis of Dendrimer Based Polymeric and Macrocyclic Complexes with a Platinum-Acetylide ${\pi}-Conjugated$ Organometallic Core

  • Jang, Woo-Dong
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.334-338
    • /
    • 2005
  • A three-layered poly(benzyl ether) dendrimer having a bis-ethynylbenzene core was synthesized and characterized with $^{1}H$ NMR and MALDI-TOF-MS spectroscopy. The dendrimer was reacted with platinum complexes to obtain platinum-acetylide based organometallic polymers. When the dendrimer was reacted with trans-[$PtCl_{2}(PEt_{3})_{2}$], a high molecular weight polymeric compound was formed, whereas, with cis-[$PtCl_{2}dppp$], a uniform molecular weight compound was formed, which was found to be a dimeric metallacycle by $^{1}H\;NMR,\;^{31}P\;NMR$ and ESI-TOF-MS spectroscopy. Both these complexes exhibited relatively a strong emission around 440 nm, indicating that they could be potential candidates for blue emitting polymer LEDs.

Backbone NMR chemical shift assignment of transthyretin

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.1
    • /
    • pp.8-11
    • /
    • 2021
  • Transthyretin (TTR) is an important transporter protein for thyroxine (T4) and a holo-retinol protein in human. In its native state, TTR forms a tetrameric complex to construct the hydrophobic binding pocket for T4. On the other hand, this protein is also infamous for its amyloidogenic propensity, which causes various human diseases, such as senile systemic amyloidosis and familial amyloid polyneuropathy/cardiomyopathy. In this work, to investigate various structural features of TTR with solution-state nuclear magnetic resonance (NMR) spectroscopy, we conducted backbone NMR signal assignments. Except the N-terminal two residues and prolines, backbone 1H-15N signals of all residues were successfully assigned with additional chemical shift information of 13CO, 13Cα, and 13Cβ for most residues. The chemical shift information reported here will become an important basis for subsequent structural and functional studies of TTR.

High-resolution 1H NMR Spectroscopy of Green and Black Teas

  • Jeong, Ji-Ho;Jang, Hyun-Jun;Kim, Yongae
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.78-84
    • /
    • 2019
  • High-resolution $^1H$ NMR spectroscopic technique has been widely used as one of the most powerful analytical tools in food chemistry as well as to define molecular structure. The $^1H$ NMR spectra-based metabolomics has focused on classification and chemometric analysis of complex mixtures. The principal component analysis (PCA), an unsupervised clustering method and used to reduce the dimensionality of multivariate data, facilitates direct peak quantitation and pattern recognition. Using a combination of these techniques, the various green teas and black teas brewed were investigated via metabolite profiling. These teas were characterized based on the leaf size and country of cultivation, respectively.

Contribution to the Phytochemical Study of Egyptian Tamaricaceous Plants

  • Barakat, Heba H.
    • Natural Product Sciences
    • /
    • v.4 no.4
    • /
    • pp.221-225
    • /
    • 1998
  • A novel flavonol trisulphate, quercetin 7-methyl ether $3,3',4'-tri-O-KSO_3$ was isolated from the fresh leaves of Tamarix amplexicaulis (Tamaricaceae) along with the known flavonol mono sulphates, quercetin $3-O-KSO_3$ and quercetin 4'-methyl ether $3-O-KSO_3$. Structures were achieved through conventional analytical methods, including electrophoretic analysis and confirmed by FAB-MS and NMR spectroscopy.

  • PDF

NMR Spectroscopy and Mass Spectrometry of Phenylethanol Galactoside synthesized using Escherichia coli 𝛽-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1323-1329
    • /
    • 2020
  • To characterize the molecular structure of PhE-gal synthesized using Escherichia coli 𝛽-gal, NMR (1H- and 13C-) spectroscopy and mass spectrometry of PhE-gal were conducted. 1H NMR spectrum of PhE-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on 2-phenylethanol (PhE). Downfield proton peaks at 𝛿H 7.30~7.21 ppm showed the presence of aromatic protons of PhE as well as benzyl CH2 protons at 𝛿H 2.88 ppm. Up field proton peaks at 𝛿H 4.31 ppm, 4.07 ppm and multiple peaks from 𝛿H 3.86~3.38 ppm are indicative of galactocylation on PhE. 13C NMR spectrum revealed the presence of 12 carbons suggestive of PhE-gal. Among 12 carbon peaks from PhE-gal, the four peaks at 138.7, 129.0, 128.6 and 126.5 were assigned aromatic carbons in the phenyl ring. Three peaks at 129.0, 128.6 and 126.5 showed high intensities, indicating CH aromatic carbons. 13C NMR data of PhE-gal showed 6 monosaccharide peaks from galactose and 2 peaks from aliphatic chain of PhE, indicating that PhE-gal was galactosyl PhE. The mass value (sodium adduct ion of PhE-gal, m/z = 307.1181) from mass spectrometry analysis of PhE-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of PhE-gal. We are expecting that through future study it will eventually be able to develop a new additive with low cytotoxicity.