• Title/Summary/Keyword: 1H-Imidazole

Search Result 71, Processing Time 0.024 seconds

Bioaccumulation of Chromium Ions by Immobilized Cells of a Filamentous Cyanobacterium, Anabaena variabilis

  • Khattar, Jasvir I.S.;Sarma, Tangirala-A.;Singh, Davinder-P.;Sharma, Anuradha
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.137-141
    • /
    • 2002
  • Anabaena variabilis ATCC 29413 grew in chromium (Cr) containing Chu-10 (basal) and nitrate-supplemented media, and the growth of the organism in $100{\mu}M$ chromium was found to be 50% of that in control medium. The growth in nitrate $({NO_3}^-)$ supplemented cultures was better as compared to cultures grown in basal medium. Free cells from basal and nitrate-supplemented media removed 5.2 and 7.4 nmol of chromium $mg^{-1}$protein in 8 h, respectively, from the medium containing $30{\mu}M$ chromium. The efficiency of chromium removal increased 7-fold in imidazole buffer (0.2 M, pH 7.0). A cell density equivalent to $100{\mu}g$ protein $ml^{-1}$ was found to be optimum for maximum Cr removal. Entrapment of cells in calcium-alginate beads did not affect the rate of Cr uptake by the cells. The efficiency of the laboratory-scale continuous flow bioreactor $(12.5{\times}2cm)$ loaded with alginate-immobilized cells (10 mg protein) and fed with $30{\mu}M$ chromium solution was compared at different flow rates. The efficiency of the bioreactor varied with flow rates. In terms of percent removal of Cr from influent, a flow rate of 0.1 ml $min^{-1}$ was found to be optimum for 6 h (54% Cr removal efficiency). Maximum amount of Cr (883 nmol) was removed by the cells in 3 h at a flow rate of 0.5 ml $min^{-1}$. The potential use of A. variabilis in removing Cr from industrial effluents is discussed.

Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization (동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조)

  • Nodora, Kerguelen Mae;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.330-335
    • /
    • 2018
  • A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and $^1H-NMR$ analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about $50^{\circ}$, as compared to $62^{\circ}$ for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)'s surface properties such as mechanical, optical, and roughness properties.

Electroluminescence Properties of Simple Anthracene Derivatives Containing Phenyl or Naphthyl Group at 9,10-position for the Blue OLED

  • Kim, Si Hyun;Lee, Song Eun;Kim, Yong Kwan;Lee, Seung Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.562-567
    • /
    • 2017
  • The organic light-emitting diodes are fabricated with six anthracene derivatives containing simple substituents such as phenyl or naphthyl group. The device structure is as in the following: Indium tin oxide (ITO) (180 nm)/4,4-4,4',4"-tris[N-(1-naphthyl)-N-phenylamino]triphenylamine (2-TNATA) (30 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl-1-amino] biphenyl (NPB) (20 nm)/Emitting compound (30 nm)/2,2',2"-(1,3,5-Benzinetriyl)-tris (1-phenyl-1-H-benz-imidazole) TPBi (40 nm)/lithium quinolate (Liq) (2 nm)/Al (100 nm). In the emitting layer the anthracene derivatives are used without any dopant. All the six devices show blue emissions. Among the tested diodes, the one with 9-(2-naphthyl)-10-(p-tolyl) anthracene (2-NTA) exhibited luminous efficiency, power and external quantum efficiencies of 3.26 cd/A, 0.98 lm/A, 2.8 % at $20mA/cm^2$.

비펩타이드성 AII 수용체 길항제의 합성 생체내 특성 및 구조활성에 관한 연구

  • 유무희
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.99-104
    • /
    • 1994
  • Renin-Angiotensin계는 정상 및 질병시의 혈압조절에 매우 중요한 역할을 담당하고 있음이 밝혀지면서, 이 조절계의 특정단계를 간섭함으로써 새로운 고혈압치료제를 개발하려는 연구가 일찍부터 시도되었다. (그림 1). 그 중에서 내인성 생리활성물질인 Angiotensin II의 합성을 차단하는 ACE 저해제는 임상적으로 고혈압 및 심부전치료제로서 유용성이 인정되어 현재 널리 사용되고 있다. ACE 저해제는 종종 마른기침, 발적과 같은 부작용이 나타나므로 이러한 부작용을 극복하려는 연구가 많이 있었으나 이는 작용기전에서 기인되는 것으로 해결에 한계를 보여왔다. 그런데 1982년 일본의 Takeda사의 연구진은 S-8307, 8308이라는 효과가 매우 약하기는 하지만 Angiotensin II 수용체를 선택적으로 차단하는 비펩타이드성의 AII길항물질을 특허 출원하였다. 미국의 Du Pont사는 AII길항약물이 효능은 그대로 유지하면서 ACE 저해제들의 부작용을 해결할 수 있을 것으로 예상하고 Takeda 화합물을 모핵으로하여, 많은 유도체들을 합성하면서 구조-활성 연구를 수행한 결과 비펩타이드성길항제인 Dup 753(Losartan, Cozaar$^{R}$) (2-N-butyl-4-chloro-5-hydroxymethyl-1-(2'-(1H-tetrazole-5-yl)biphenyl-4-yl) imidazole, potassium salt)을 발견하게 되었다. 이 Dup 753은 특별히 AII수용체중 혈압조절과 관련이 있는 AT1 수용체를 선택적으로 차단하는데, 효력은 ACE 저해제인 captopril과 유사하며, 경구흡수가 잘되고 지속시간이 길어 하루에 한번 먹는 경구제제로 개발되고 있는 것으로 알려져 있다. 이 Dup 753의 지속시간이 긴 것은 그 대사물인 Exp 3174에 기인하는 것으로 알려져 있으며, 대사체가 Dup 753에 비해 효력도 훨씬 더 높고 지속시간도 길어서, Dup 753은 일종의 prodrug적 개념이 들어있는 약물이라 할 수 있다.

  • PDF

Optically Active and Organosoluble Poly(amide-imide)s Derived from N,N'-(Pyromellitoyl)bis-L-histidine and Various Diamines: Synthesis and Characterization

  • Faghihi, Khalil;Shabanian, Meisam;Hajibeygi, Mohsen
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.912-918
    • /
    • 2009
  • An optically active diacid containing the L-histidine moiety was prepared by reacting pyromellitic dianhydride (1,2,4,5-benzenetetracarboxylic acid 1,2,4,5-dianhydride) 1 with L-histidine 2 in acetic acid, and was polymerized with several aromatic diamines 5a-g to obtain a new series of optically active poly(amide-imide)s (PAIs) using two different methods, such as direct polycondensation in a medium consisting of N-methyl-2-pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride ($CaCl_2$)/pyridine (Py) and direct polycondensation in a tosyl chloride (TsCl)/pyridine (Py)/N,N-dimethylformamide (DMF) system as a condensation agent. The resulting new polymers 6a-g with inherent viscosity was obtained in good yield. The polymers were readily soluble in polar organic solvents, such as N,N-dimethyacetamide (DMAc), N,N-dimethyformamide (DMF), and dimethyl sulfoxide (DMSO). The obtained polymers were characterized by FTIR, specific rotation, elemental analysis as well as $^1$H-NMR spectroscopy and gel permeation chromatography (GPC). The thermal stability of the resulting PAIs was evaluated with thermogravimetric analysis techniques under a nitrogen atmosphere.

Enzymatic Extraction of Pilocarpine from Pilocarpus jaborandi (Pilocarpus jaborandi로부터 필로카르핀의 효소반응추출)

  • Cho, Jun-Ho;Bhattarai, Saurabh;Oh, Tae-Jin;Jang, Jong Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.236-241
    • /
    • 2013
  • Pilocarpine is an imidazole alkaloid, found exclusively in the Pilocarpus genus, with huge pharmaceutical importance. In order to extract pilocarpine from Pilocarpus jaborandi, environmentally friendly enzyme-assisted extraction was applied. Viscozyme$^{(R)}$ L, a commercially available enzyme cocktail, was used for the study. The conditions for extraction were optimized on the basis of substrates, enzymes, temperatures and pHs. Optimum conditions for extraction with the highest yield were 30 h reaction of 100 mg substance at $45^{\circ}C$ in 40 ml of 50 mM acetic acid, pH 4. A 10% enzyme concentration was found to be the best for extraction. Total pilocarpine content after extraction was analyzed by HPLC. The total pilocarpine content ($1.14{\mu}g/mg$) obtained from Viscozyme$^{(R)}$ L treatment was 3.08-fold greater than those of the control treatment ($0.37{\mu}g/mg$).

Determination of Heterocyclic Amines in Roasted Fish and Shellfish by Liquid Chromatography-Electrospray Ionization/Mass Spectrometry (Liquid chromatography-mass spectrometry를 이용한 가열 조리된 어패류에서의 heterocyclic amines 함량 분석)

  • Lee, Jae-Hwan;Back, Yoo-Mi;Lee, Kwang-Geun;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.326-333
    • /
    • 2009
  • Heterocyclic aromatic amines (HCAs) are mutagenic and carcinogenic substances that are formed during the heating of protein-rich foods. HCAs are generally found at low amounts in a complex matrix, which requires sophisticated analysis. In this study, HCAs were extracted from lyophilized fish and shellfish samples using solid-phase extraction (SPE) and determined by liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI-MS). The HCA recoveries in the fish and shellfish ranged from 15.7 to 74.7% with standard deviations from 0.2 to 7.63%. And HCA concentrations ranged from 0.8 to 1,117.7 $ng/g^{-1}$ in cooked food samples. 1-methyl-9H-pyrido[3,4-b]indole (Harman), 9H-pyrido[3,4-b]indole (Norharman), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were the most abundant HCAs formed in the muscle of fried mackerel, at levels of 1,117.7, 926.6, and 133.7 ng/g, respectively. 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-aminodipiryrido[1,2-a:3,2-d]imidazole(Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole(A${\alpha}$C), 2-amino-3methyl-9H-pyrido [1,2-a:3,2-d]imidazole(MeA${\alpha}$C), 2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline (TriMeIQx), 2-amino-3,7,8-trimethylimidazo [4,5-f]quinoxaline(7,8-DiMeIQx), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were only detected by small quantities ranged from 1.5 to 98.6 ng/g. Overall, this study provides useful information on HCA levels in fish and shellfish products consumed in Korea.

Action of Aconite on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (토끼 적혈구막의 NaK ATPase의 활성도에 대한 aconite의 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 1976
  • The action of aconite on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of aconite on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is stimulated by aconite, and the concentration of aconite for maximal activity is about 80 mg%. The pH optimum for the aconite sensitive component is 8.0. 2. The activating effect of aconite on the ATPase, with a given concentration of sodium in the medium, is increased by raising the potassium concentration but activity ratio is decreased. 3. The activating effect of aconite on the ATPase, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased. 4. The action of aconite on the ATPase activity is inhibited by calcium ions and the effect of inhibition is increased by small amounts of calcium but decreased by larger amounts. 5. The activating effect of aconite on the ATPase was not related to the sulfhydryl group of cysteine, the amino group of lysine, the hydroxyl group of threonine or the imidazole group of histidine. 6. The action of aconite on the ATPase activity is due to carboxyl group of the enzyme of NaK ATPase.

  • PDF

Action of Pilocarpine on Sodium-Potassium activated ATPase in Rabbit Red Cell Membrane (Pilocarpine이 토끼 적혈구막의 NaK ATPase의 활성도에 대한 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.11 no.1
    • /
    • pp.11-20
    • /
    • 1977
  • The action of pilocarpine on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of pilocarpine on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is stimulated by pilocarpine, and the concentration of pilocarpine for maximal activity is about 3 mM. The pH optimum for the pilocarpine sensitive component is 8.0. 2. The activating effect of pilocarpine on the ATPase, with a given concentration of sodium .in the medium, is increased by raising the potassium concentration but activity ratio is decreased 3. The activating effect of pilocarpine on the ATPase, with a given concentration of Potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased 4. The NaK ATPase activity is increased by small amounts of calcium but decreased by 'larger amounts. The activity ratio of the enzyme by pilocarpine is decreased by small amounts .of calcium but decreased by larger amounts. 5. The activating effect of pilocarpine on the ATPase was not related to the sulfhydryl group of cysteine, the hydroxyl group of threonine or the imidazole group of histidine. 6. The activating effect of pilocarpine on the ATPase is due to amino group and carboxyl group of the enzyme of NaK ATPase

  • PDF

Characteristics of Endo-Polygalacturonase from Korean jujube (한국산 대추의 Endo-Polygalacturonase의 특성)

  • Choi, Cheong;Chun, Sung-Sook;Cho, Young-Je;Ahn, Bong-Jeon;Kim, Young-Hwal;Lee, Seon-Ho;Kim, Seong
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.356-360
    • /
    • 1994
  • The optimum pH and temperature for endo-polygalacturonase activity from Jujube were 5.0 and $50^{\circ}C$. The range of its stability to pH was 4.0 to 5.0. The enzyme was inactivated about 35% by treatment at $70^{\circ}C$ for 1 hr. It was found that $Ag^+$, $Zn^{++}$ and $Mg^{++}$ increased the enzyme activity. In contrast, $Ba^{++}$, $Hg^{++}$, $Pb^{++}$, $Ca^{++}$, $Mn^{++}$, $Cu^{++}$, $Fe^{+++}$, $Na^+$ and $K^+$ decreased it. The enzyme was inactivated by treatment with maleic anhydride, iodine and 2,4-dinitrophenol. The results indicate that active site is a imidazole group on the enzyme.

  • PDF