• 제목/요약/키워드: 1D-CNN

검색결과 130건 처리시간 0.02초

음각 정보를 이용한 딥러닝 기반의 알약 식별 알고리즘 연구 (Pill Identification Algorithm Based on Deep Learning Using Imprinted Text Feature)

  • 이선민;김영재;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권6호
    • /
    • pp.441-447
    • /
    • 2022
  • In this paper, we propose a pill identification model using engraved text feature and image feature such as shape and color, and compare it with an identification model that does not use engraved text feature to verify the possibility of improving identification performance by improving recognition rate of the engraved text. The data consisted of 100 classes and used 10 images per class. The engraved text feature was acquired through Keras OCR based on deep learning and 1D CNN, and the image feature was acquired through 2D CNN. According to the identification results, the accuracy of the text recognition model was 90%. The accuracy of the comparative model and the proposed model was 91.9% and 97.6%. The accuracy, precision, recall, and F1-score of the proposed model were better than those of the comparative model in terms of statistical significance. As a result, we confirmed that the expansion of the range of feature improved the performance of the identification model.

스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구 (Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films)

  • 이은지;유영준;변창우;김진평
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

글로벌 라이프로그 미디어 클라우드 개발 및 구축 (Global lifelog media cloud development and deployment)

  • 송혁;최인규;이영한;고민수;오진택;유지상
    • 방송과미디어
    • /
    • 제22권1호
    • /
    • pp.35-46
    • /
    • 2017
  • 글로벌 라이프로그 미디어 클라우드 서비스를 위하여 네트워크 기술, 클라우드 기술 멀티미디어 App 기술 및 하이라이팅 엔진 기술이 요구된다. 본 논문에서는 미디어 클라우드 서비스를 위한 개발 기술 및 서비스 기술 개발 결과를 보였다. 하이라이팅 엔진은 표정인식기술, 이미지 분류기술, 주목도 지도 생성기술, 모션 분석기술, 동영상 분석 기술, 얼굴 인식 기술 및 오디오 분석기술 등을 포함하고 있다. 표정인식 기술로는 Alexnet을 최적화하여 Alexnet 대비 1.82% 우수한 인식 성능을 보였으며 처리속도면에서 28배 빠른 결과를 보였다. 행동 인식 기술에 있어서는 기존 2D CNN 및 LSTM에 기반한 인식 방법에 비하여 제안하는 3D CNN 기법이 0.8% 향상된 결과를 보였다. (주)판도라티비는 클라우드 기반 라이프로그 동영상 생성 서비스를 개발하여 현재 테스트 서비스를 진행하고 있다.

Comparison of Neural Network Techniques for Text Data Analysis

  • Kim, Munhee;Kang, Kee-Hoon
    • International Journal of Advanced Culture Technology
    • /
    • 제8권2호
    • /
    • pp.231-238
    • /
    • 2020
  • Generally, sequential data refers to data having continuity. Text data, which is a representative type of unstructured data, is also sequential data in that it is necessary to know the meaning of the preceding word in order to know the meaning of the following word or context. So far, many techniques for analyzing sequential data such as text data have been proposed. In this paper, four methods of 1d-CNN, LSTM, BiLSTM, and C-LSTM are introduced, focusing on neural network techniques. In addition, by using this, IMDb movie review data was classified into two classes to compare the performance of the techniques in terms of accuracy and analysis time.

Neural Networks-Based Method for Electrocardiogram Classification

  • Maksym Kovalchuk;Viktoriia Kharchenko;Andrii Yavorskyi;Igor Bieda;Taras Panchenko
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.186-191
    • /
    • 2023
  • Neural Networks are widely used for huge variety of tasks solution. Machine Learning methods are used also for signal and time series analysis, including electrocardiograms. Contemporary wearable devices, both medical and non-medical type like smart watch, allow to gather the data in real time uninterruptedly. This allows us to transfer these data for analysis or make an analysis on the device, and thus provide preliminary diagnosis, or at least fix some serious deviations. Different methods are being used for this kind of analysis, ranging from medical-oriented using distinctive features of the signal to machine learning and deep learning approaches. Here we will demonstrate a neural network-based approach to this task by building an ensemble of 1D CNN classifiers and a final classifier of selection using logistic regression, random forest or support vector machine, and make the conclusions of the comparison with other approaches.

합성곱 신경망을 이용한 딥러닝 기반의 프레임 동기 기법 (Deep Learning based Frame Synchronization Using Convolutional Neural Network)

  • 이의수;정의림
    • 한국정보통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.501-507
    • /
    • 2020
  • 본 논문에서는 합성곱 신경망(CNN)에 기반한 프레임 동기 기법을 제안한다. 기존의 프레임 동기 기법은 프리앰블과 수신 신호 사이의 상관을 통해 수신 신호와 프리앰블이 일치하는 지점을 찾는다. 제안하는 기법은 1차원 벡터로 이루어진 상관기 출력 신호를 2차원 행렬로 재구성하며, 이 2차원 행렬을 합성곱 신경망에 입력하고 합성곱 신경망은 프레임 도착 지점을 추정한다. 구체적으로 가산 백색 가우스 잡음(AWGN) 환경에서 무작위로 도착하는 수신 신호를 생성하여 학습 데이터를 만들고, 이 학습 데이터로 합성곱 신경망을 학습시킨다. 컴퓨터 모의실험을 통해 기존의 동기 기법과 제안하는 기법의 프레임 동기 오류 확률을 다양한 신호 대 잡음 비(SNR)에서 비교한다. 모의실험 결과는 제안하는 합성곱 신경망을 이용한 프레임 동기 기법이 기존 기법 대비 약 2dB 우수함을 보인다.

딥러닝 기반 낙상 감지 시스템의 구성과 적용 (Configuration and Application of a deep learning-based fall detection system)

  • 우종석;리오넬;정상중;정완영
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.213-220
    • /
    • 2023
  • 낙상은 일상의 활동 중에 예기치 않게 발생하여 생활에 많은 어려움을 초래한다. 본 연구는 고위험 직종 종사자들의 낙상 감지를 위한 시스템을 구성하고 자료를 수집하여 예측 모델에 적용함으로써 그 유효성을 검증하는 것을 목적으로 하였다. 이를 위해 가속도센서와 자이로센서를 통해 가속도 신호와 방위각을 산출하여 낙상 여부를 감지하는 웨어러블 기기를 구성하였다. 그리고 연구 참여자들이 이 기기를 복부에 착용하고 정해진 활동을 수행하는 과정에서 낙상과 관련한 동작으로부터 필요한 데이터를 측정하고 기기 내에 존재하는 블루투스 장치를 통해 컴퓨터로 전송하였다. 이렇게 수집된 데이터를 필터링 등을 통해 처리하여 딥러닝 알고리즘들인 1D CNN, LSTM, CNN-LSTM에 근거한 낙상 감지 예측 모델들에 적용하고 그 결과를 평가하였다.

Fourier Ptychographic Microscopy 영상에서의 딥러닝 기반 디지털 염색 방법 연구 (Deep Learning Based Digital Staining Method in Fourier Ptychographic Microscopy Image)

  • 황석민;김동범;김유정;김여린;이종하
    • 융합신호처리학회논문지
    • /
    • 제23권2호
    • /
    • pp.97-106
    • /
    • 2022
  • 본 연구에서 세포를 분별하기 위해 H&E 염색이 필요하다. 그러나 직접 염색하면 많은 비용과 시간이 필요하다. H&E 염색되지 않은 세포의 Phase image에서 H&E 염색이 된 세포의 Amplitude image로 변환 하는 것이 목적이다. FPM으로 촬영한 Image data를 가지고 Matlab을 이용해 매개변수를 변경해 Phase image와 Amplitude image를 만들었다. 정규화를 통해 육안으로 식별이 가능한 이미지를 얻었다. GAN 알고리즘을 이용해 Phase image를 기반으로 Real Amplitude image와 비슷한 Fake Amplitude image를 만들고 Fake Amplitude image를 가지고 MASK R-CNN을 이용하여 세포를 분별하여 객체화를 통해 구분했다. 연구 결과 D loss의 max는 3.3e-1, min은 6.8e-2, G loss max는 6.9e-2, min은 2.9e-2, A loss는 max 5.8e-1, min은 1.2e-1, Mask R-CNN max는 1.9e0, min은 3.2e-1이다.

Fault diagnosis of linear transfer robot using XAI

  • Taekyung Kim;Arum Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.121-138
    • /
    • 2024
  • Artificial intelligence is crucial to manufacturing productivity. Understanding the difficulties in producing disruptions, especially in linear feed robot systems, is essential for efficient operations. These mechanical tools, essential for linear movements within systems, are prone to damage and degradation, especially in the LM guide, due to repetitive motions. We examine how explainable artificial intelligence (XAI) may diagnose wafer linear robot linear rail clearance and ball screw clearance anomalies. XAI helps diagnose problems and explain anomalies, enriching management and operational strategies. By interpreting the reasons for anomaly detection through visualizations such as Class Activation Maps (CAMs) using technologies like Grad-CAM, FG-CAM, and FFT-CAM, and comparing 1D-CNN with 2D-CNN, we illustrates the potential of XAI in enhancing diagnostic accuracy. The use of datasets from accelerometer and torque sensors in our experiments validates the high accuracy of the proposed method in binary and ternary classifications. This study exemplifies how XAI can elucidate deep learning models trained on industrial signals, offering a practical approach to understanding and applying AI in maintaining the integrity of critical components such as LM guides in linear feed robots.

딥러닝 기법을 활용한 가구 부자재 주문 수요예측 (Demand Prediction of Furniture Component Order Using Deep Learning Techniques)

  • 김재성;양여진;오민지;이성웅;권순동;조완섭
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.111-120
    • /
    • 2020
  • 최근 코로나 19 사태로 인한 경기 위축에도 불구하고, 재택근무 증가로 집에 거주하는 시간이 늘어나면서 주거환경에 관한 관심이 커지고 있으며, 이에 따라 리모델링에 대한 수요가 증가하고 있다. 또한, 정부의 부동산 정책 또한 규제 정책에서 주택공급 확대 방향으로 전환하면서 이에 따른 인테리어, 가구업계의 매출에도 가시적인 영향이 있을 것으로 예상한다. 정확한 수요예측은 재고 관리와 직결되는 문제로 정확한 수요예측은 불필요한 재고를 보유할 필요가 없어 과잉생산으로 인한 물류, 재고 비용을 줄여줄 수 있다. 하지만 정확한 수요를 예측하기 위해서는 지속적으로 변화하는 경제동향, 시장동향, 사회적 이슈등 외부요인을 모두 고려하여 분석해야 하기 때문에 어려운 문제이다. 본연구에서는 가구 부자재를 생산하고 있는 제조업체에 대하여 신뢰성 있는 결과 도출을 위해 인공지능기반 시계열 분석 방법으로, LSTM 모형, 1D-CNN 모형을 비교 분석하였다.