• Title/Summary/Keyword: 17GHz

Search Result 576, Processing Time 0.02 seconds

Farbrication and perfomance of a laser driver IC with broad bandwidth of DC - 18 GHz (DC - 18GHz의 광대역 레이저 구동회로 제작 및 특성)

  • 박성호;이태우;기현철;김충환;김일호;박문평
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.34-40
    • /
    • 1998
  • For applicating to 10-Gbit/s optical transimission systems, we have designed and fabricated a laser driver IC with extremely-high-operation-frequencies using AlGaAs/GaAs heterojunction bipolar transistors (HBTs), and have investigated its performances. Circuits design andsimulation were performed using SPICE and LIBRA. A discrete AlGaAs/GaAs HBT with the emitter area of 1.5*10 .mu.m$^{2}$, used for the circuit fabrication, exhibited cutoff frequency of 63 GHz andmaximum osciallation frquency of 50 GHZ. After fabrication of MMICs, we observed the very wide bandwidth of DC~18 GHz and the S$_{21}$ gain of 17 dB for a laser driver IC from the on-wafer measurement. Metal-packaged laser driver IC showed the excellent eye opening, the modulation currents of 32 mA, the rise/fall time of 40 ps, measured at the data rates of 10-Gbit/s.

  • PDF

A SiGe BiCMOS MMIC differential VCO for 4.75 GHz WLAN Applications (4.75 GHz WLAN 용 SiGe BiCMOS MMIC 차동 전압제어 발진기)

  • 배정형;김현수;오재현;김영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.270-273
    • /
    • 2003
  • The design, fabrication, and measured result of a 4.7 GHz differential VCO (Voltage Controlled Oscillator) for a 5.2 GHz WLAN (Wireless Local Area Network) applications is presented. The circuit is designed in a 0.35 mm technology employing three metal layers. The design is based on a fully integrated LC tank using spiral inductors. Measured tuning range is 10% of oscillation frequency with a control voltage from 0 to 3.0 V. Oscillation power of $\square$ 2.3 dBm at 4.63 GHz is measured with 21 mA DC current at 3V supply. The phase noise is $\square$ 104.17 dBc/Hz at 1 MHz offset.

  • PDF

Isolation Enhancement between Two Dual-Band Microstrip Patch Antennas Using EBG Structure without Common Ground Plane (독립된 접지면을 갖는 EBG 구조를 이용한 이중 대역 마이크로스트립 패치 안테나 사이의 격리도 향상)

  • Choi, Won-Sang;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.306-313
    • /
    • 2012
  • In order to enhance the isolation level between two dual-band E-slot microstrip patch antennas, EBG structure which operates in UMTS Tx(1.92~1.98 GHz) and Rx(2.11~2.17 GHz) band is proposed. The proposed EBG structure made with a periodic array of two different size EBG unit cells which has a modified mushroom-type for isolation improvement between two antennas. They do not share a common ground plane of the microstrip patch antenna. Overall size of the fabricated antenna is $210.5mm{\times}117mm$. The two different EBG unit cell sizes are $15.6mm{\times}4mm$ and $17.4mm{\times}4mm$, respectively. It was etched on the FR-4 substrate(thickness=3.93 mm, ${\varepsilon}_r$=4.6). The experiment results show that the isolation level between antennas in Tx/Rx band were improved by about 9 dB and 12 dB, respectively, through the use of the proposed EBG structure.

The Design and Implementation of SSPA(Solid State Power Amplifier) using chip device (Chip소자를 이용한 SSPA 설계 및 제작에 관한 연구)

  • Kim Yong-Hwan;Min Jun-ki;Kim HyunJin;Yoo Hyeong-soo;Lee Hyeong-kyu;Hong Ui-seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.65-72
    • /
    • 2003
  • In this work a 6-stage hybrid power amplifier which can be used for the wireless communication systems for MMC(hficrowave Micro Cell) and ITS wireless communication system is designed and fabricated. Ihe power amplifier's each stages was fabricated Hetero-junction Power FET of bare chip type and an alumina substrate with $\varepsilon_{r}$=9.9 and 15-mil thickness. The measured results of power amplifier module showed 33.2$\~$36.5 dB small signal gain, 33.0$\~$34.0 dBm output power at forward frequency (17.6 GHa $\~$ 17.9 CHz) and 36.0$\~$37.0 dB small signal gain, 33.0$\~$34.5 dBm output power at reverse frequency (19.0 GHz $\~$19.2GHz).

  • PDF

High-Performance Millimeter Wave Harmonic Output Oscillator using Sub-Harmonic Wave Injection-Synchronization (서브하모닉 주입동기에 의한 밀리미터파 대역 고조파 발진기의 고성능화)

  • Choi, Young-Kyu;Nam, Byeong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This paper deals with a millimeter wave source which is utilizing sub-harmonic injection-synchronization technique. A 8.7GHz oscillator with MES-FET is fabricated, and is driven as a harmonic output oscillator at 17.4GHz by means of sub-harmonic injection-synchronization. The oscillator operates as a multiplier as well as oscillator in this system. Adopting this technique, we can obtain a high stable, high frequency millimeter wave source even though self-oscillating frequency of an oscillator is relatively low. In the experiments, the range of injection-synchronization is about 26MHz and is proportional to the input sub-harmonic power. From the spectrum analysis of the 2nd harmonic output. we blow that the phase noise of the harmonic oscillator is remarkably decreased.

A Compact CPW-fed Antenna with Two Slit Structure for WLAN/WiMAX Operations (WLAN/WiMAX 대역에서 동작하는 두 개의 슬릿 구조를 갖는 CPW 급전방식 소형 안테나)

  • Kim, Woo-Su;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.759-766
    • /
    • 2022
  • In this paper, we propose a multi-band small antenna with CPW(Coplanar Waveguide) feeding structure WLAN(Wireless Local Area Network) and WiMAX (Worldwide Interoperability for Microwave Access) bands. The proposed antenna is designed two slit in the modified monopole type radiator and FR-4 substrate, which is thickness 1.0 mm, and the dielectric constant is 4.4. The size of proposed antenna is 15.1 mm⨯16.41 mm, and total size of proposed antenna is 17.5 mm⨯16.4 mm. From the fabrication and measurement results, From the fabrication and measurement results, bandwidths of 439 MHz (2.06 to 2.499 GHz), 840 MHz (3.31 to 4.25) and 1,315 MHz (5.23 to 6.545 GHz) were obtained on the basis of -10 dB impedance bandwidth. Also, 3D radiation pattern characteristics of the proposed antenna are displayed and measured gains 2.24 dBi, 2.83 dBi, and 2.0 dBi shown in the three frequency band, respectively.

A Study on Development of Electro Magnetic Wave Absorbers for Mobile Phones (휴대전화 단말기용 전파 흡수체의 개발에 관한 연구)

  • Choi Yun-Seok;Jung Jae-Hyun;Kim Dong-Il
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.423-429
    • /
    • 2006
  • This paper deals with research for development of electromagnetic wave absorbers in sheet type for mobile phones. By controlling the sendust ratio, the $Al(OH)_3$ coating, the thickness, the kind of binders, and the milling time, electromagnetic wave absorbers were prepared and examined. Central frequency shills toward lower 2.2 GHz, 1.29 GHz, 842 MHz with increasing thickness 1 mm, 2 mm, 3 mm of the absorber, and absorption ability controlled each 2.2 GHz to 1.91 GHz, 1.29 GHz to 801 MHz, 842 MH2 to 801 MHz adjust sendust amount from 80 wt% to 85 wt%. The absorption band of the electromagnetic wave absorber coated with $Al(OH)_3$ becomes larger than that of non-coated one. Sendust composite microwave absorbers mixed with CPE were prepared at $70^{\circ}C$ in temperature. The fabricated electromagnetic wave absorbers show a reflection coefficient 5.76 dB at 1.8 GHz in thickness of 0.85 mm.

Design of Wideband Antenna for IEEE 802.11a (IEEE 802.11a용 광대역 안테나 설계)

  • Ju Seong-Nam;Kim Pyoung-Gug;Kim Kab-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.416-422
    • /
    • 2006
  • In this paper, we have designed and favricated the high gain and wideband microstrip patch antenna including IEEE 802.11a. To widen the bandwidth of microstrip antenna, firstly we have used the microstrip line-coaxial probe feeding method and inserted a U-slot in the rectangular patch. Secondly, to improve the antenna gain, we have used a $2{\times}2$ array structure. From the measured results, wideband characteristics of 1 GHz bandwidth($5.110{\sim}6.142$ GHz) for VSWR<2 was obtained. The measured eain was 13 dBi in both the E-plane and H-plane at the frequency of 5.15 GHz, 5.35 GHz, 5.50 GHz, and 5.85 GHz.

A Design of Printed square Loop Antenna for Omni-diractional Radiation Patterns (전방향 복사페턴의 인쇄형 사각 루-프안테나 설계)

  • 이현진;차상진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.93-98
    • /
    • 2003
  • In this paper, we designed a printed square loop antenna for operating of PCS and IMT2000 band. The proposed antenna has omni-directional radiation patterns with broad bandwidth, similar to the conventional antenna, to easy feed on composing single planar. We obtain an ideal impedance matching and increase bandwidth. An antenna bandwidth is about 150MHz(1.74∼l.89〔GHz〕) at 1$^{st}$ resonance frequency and 290MHz(1.95∼2.24GHz) at 2$^{nd}$ resonance frequency on VSWR(equation omitted)1.5, and then we can obtain not only 1.73∼l.87 〔GHz〕 PCS band but also 1.92∼2.17 (GHz) IMT2000 band. band.

CMOS Based D-Band Push-Push Voltage Controlled Oscillator (푸쉬-푸쉬 방식을 이용한 CMOS 기반 D-밴드 전압 제어 발진기)

  • Jung, Seungyoon;Yun, Jongwon;Kim, Namhyung;Rieh, Jae-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1236-1242
    • /
    • 2014
  • In this work, a D-band VCO(Voltage Controlled Oscillator) has been developed in a 65-nm CMOS technology. The circuit was designed based on push-push mechanism. The output oscillation frequency of the fabricated VCO varied from 152.7 GHz to 165.8 GHz, and the measured output power was from -17.3 dBm to -8.7 dBm. A phase noise of -90.9 dBc/Hz is achieved at 10 MHz offset. The chip size of the circuit is $470{\mu}m{\times}360{\mu}m$ including the probing pads.