• 제목/요약/키워드: 16S ribosomal DNA

검색결과 147건 처리시간 0.028초

Composition and Diversity of Salivary Microbiome Affected by Sample Collection Method

  • Lee, Yeon-Hee;Hong, Ji-Youn;Lee, Gi-Ja
    • Journal of Oral Medicine and Pain
    • /
    • 제47권1호
    • /
    • pp.10-26
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate whether various saliva collection methods affect the observed salivary microbiome and whether microbiomes of stimulated and unstimulated saliva and plaque differ in richness and diversity. Methods: Seven sampling methods for unstimulated saliva, stimulated saliva, and plaque samples were applied to six orally and systemically healthy participants. Bacterial 16S ribosomal RNA genes of 10 major oral bacterial species, namely, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Prevotella intermedia, Prevotella nigrescens, Streptococcus mitis, Streptococcus sobrinus, and Lactobacillus casei, were analyzed by real-time polymerase chain reaction. We comprehensively examined the dependence of the amount of bacterial ribosomal DNA (rDNA), bacterial-community composition, and relative abundance of each species on sample collection methods. Results: There were significant differences in the bacterial rDNA copy number depending on the collection method in three species: F. nucleatum, P. nigrescens, and S. mitis. The species with the highest richness was S. mitis, with the range from 89.31% to 100.00%, followed by F. nucleatum, P. nigrescens, T. denticola, T. forsythia, and P. intermedia, and the sum of the proportions of the remaining five species was less than 1%. The species with the lowest observed richness was P. gingivalis (<0.1%). The Shannon diversity index was the highest in unstimulated saliva collected with a funnel (4.449). The Shannon diversity index was higher in plaque samples (3.623) than in unstimulated (3.171) and stimulated (3.129) saliva and in mouthwash saliva samples (2.061). Conclusions: The oral microbial profile of saliva samples can be affected by sample collection methods, and saliva differs from plaque in the microbiome. An easy and rapid technique for saliva collection is desirable; however, observed microbial-community composition may more accurately reflect the actual microbiome when unstimulated saliva is assayed.

16S/23S Intergenic Spacer Region as a Genetic Marker for Thiobacillus thiooxidans and T.ferrooxidans

  • Lee, Hye-Won;Choi, Won-Young;Cho, Kyung-Suk;Choi, Won-Ja
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1046-1054
    • /
    • 2001
  • Bioleaching is the process in which insoluble metal sulfide is oxidized by specialized iron- and/or sulfur-oxidizing lithotrophic bacteria in acidic, metal-rich environments. Most of these processes are carried out by the genus Thiobacillus. Three novel Thiobacillus strains (Thiobacillus thiooxidans AZ11, Thiobacillus thiooxidans MET, and thiobacillus thiooxidans TAS) associated with bioleaching have been isolated from soil and sludge (Korean patent No. 1999-0073060 for T. thiooxidans AZ11, Korean patent No. 1999-0005798 for T. thiooxidans MET, and Korean patent No. 1999-0073059 for T. thiooxidans TAS). A partial sequence of 16S ribosomal RNA gene (16S rDNA) and the entire sequence of 16S/23S intergenic spacer region (ISR) were determined in the three above novel strains and in Thiobacillus ferrooxidans ATCC19859 as a reference strain. When phylogenetic analysis was performed based on G+C contents and sequence alignments, T. ferroxidans ATCC19859 was found to be closely related to previously registered T. ferrooxidans strains in a monophyletic manner, while the three novel T. thiooxidans strains were classified in a paraphyletic manner. Close examination on the base composition of 16S/23S ISR revealed that the 5\` part (nucleotide residues 21-200) was specific for the genus Thiobacillus. On the other end, the 3\` part (nucleotide residues 201-520) showed specificity in T. ferrooxidans strains, but not in T. thiooxidans strains. These results suggest that the proximal and distal halves of 16S/23S could be used as a genetic marker for the identification of the genus Thiobacillus and the species T. ferrooxidans, respectively.

  • PDF

Elucidation of Copper and Asparagine Transport Systems in Saccharomyces cerevisiae KNU5377 Through Genome-Wide Transcriptional Analysis

  • KIM IL-SUP;YUN HAE SUN;SHIMISU HISAYO;KITAGAWA EMIKO;IWAHASHI HITOSHI;JIN INGNYOL
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1240-1249
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 has potential as an industrial strain that can ferment wasted paper for fuel ethanol at $40^{\circ}C$ [15, 16]. To understand the characteristics of the strain, genome-wide expression was performed using DNA microarray technology. We compared the homology of the DNA microarray between genomic DNAs of S. cerevisiae KNU5377 and a control strain, S. cerevisiae S288C. Approximately $97\%$ of the genes in S. cerevisiae KNU5377 were identified with those of the reference strain. YHR053c (CUP1), YLR155c (ASP3), and YDR038c (ENA5) showed lower homology than those of S. cerevisiae S288C. In particular, the differences in the regions of YHR053c and YLR155c were confirmed by Southern hybridization, but did not with that of the region of YDR038c. The expression level of mRNA in S. cerevisiae KNU5377 and S288C was also compared: the 550 ORFs of S. cerevisiae KNU5377 showed more than two-fold higher intensity than those of S. cerevisiae S288C. Among the 550 ORFs, 59 ORFs belonged to the groups of ribosomal proteins and mitochondrial ribosomal proteins, and 200 ORFs belonged to the group of cellular organization. DIP5 and GAP1 were the most highly expressed genes. These results suggest that upregulated DIP5 and GAP 1 might take the place of ASP3 and, additionally, the sensitivity against copper might be contributable to the lowest expression level of copper-binding metallothioneins encoded by CUP 1a (YHR053c) and CUP1b (YHR055c) in S. cerevisiae KNU5377.

Molecular Systematics of Tephritidae (Insecta : Diptera): Testing Phylogenetic Position of Korean Acidiella spp. (Trypetini) Using Mitochondrial 16S rDNA Sequences

  • Han, Ho-Yeon;Ro, Kyung-Eui
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.13-18
    • /
    • 2002
  • Phylogenetic relationships of Korean Acidiella species were tested using mitochondrial 16S ribosomal RNA gene sequences. We used 16 published sequences as outgroup, and 10 new sequences for nine Korean Acidiella species as ingroup. The number of aligned sites was 1,281 bp, but 1,135 bp were used for the analysis after excluding sites with missing data or gaps. Among these 1,135 sites, 464 sites were variable and 340 were informative for parsimony analysis. Phylogenetic information was extracted from this data set using neighbor-joining, maximum likelihood and maximum parsimony methods and compared to a morphology-based phylogenetic hypothesis. Our molecular data suggest that: (1) the tribe Trypetini appears to be monophyletic even when the nine additional Acidiella species are added to our previous phylogenetic analysis; (2) all the Korean Acidiella species belong to the Trypeta group, but the genus Acidiella is not supported as monophyletic; (3) the close relationship of A. circumvaga, A. issikii, and A. sapporensis is supported; (4) the close relationship of A. pachypogon and two additional new Acidiella species is strongly supported; and (5) the possible presence of two or more cryptic species among the specimens previously identified as A. obscuripennis is suggested. Sequence data from the mitochondrial 16S rDNA allowed us to better understand the systematic status of Korean Acidiella species. They indicated that the current concept about the genus Acidiella is insufficient and needs to be refined further. This study also showed a few interesting relationships, that had not been recognized by morphological study alone. Based on this study, we were able to plan further experiments to analyze relationships within the Trypeta Group.

Phylogeny of Korean Isolates of Phytophthora Species Based on Sequence Analysis of Internal Transcribed Spacer of Ribosomal DNA

  • Hong, Seung-Beom;Jee, Hyeong-Jin;Kim, Sang-Hee;Go, Seung-Joo
    • The Plant Pathology Journal
    • /
    • 제16권1호
    • /
    • pp.29-35
    • /
    • 2000
  • The internal transcribed spacer regions (ITS I, 5.8S and ITS II) of the ribosomal DNAs were amplified from Korean isolates of Phytophthora spp. and sequenced to characterize them. Sequences from 33 isolates previously identified as P. boehmeriae, P. cactprum, P. cambivora, P. capsici, P. cinnamomi, P. erythroseptica, P. infestans, P. megasperma, P. melonis, P. nicotianae, P. palmivora and P. sojae were compared with published sequences, and a phylogenetic tree was produced. All isolates belonging to 10 species, P. cactorum, P. cambivora, P. capsici, P. cinnamomi P. citricola, P. infestans, P. nicotianae, P. palmivora and P. sojae were clearly clustered into published isolates of each species above 97% bootstrap value. Cucurbits isolates of Phytophthora previously identified as either P. melonis or P. drechsleri showed distinct evolutionary lineages from the P. megasperma was closely related to isolates of P. cryptogea-P. drechsleri showed distinct evolutionary lineages from the P. cryptogea-P. drechsleri complex group, indicating that P. melonis is a valid species. A Korean isolate of P. megasperma was closely related to isolates of P. erythroseptica showed distant genetic relationship with published isolates of P. erythroseptica (CBS 956.87). It is probable that the two Korean isolates could be genetically different from foreign isolates or misidentified. A grouping of species according to ITS sequence divergence matched, to some degree, the broad classification based on type of papilla. However, a separation of semi-papillate species and papillate species was not wvident in this study.

  • PDF

DNA 바코드를 이용한 가정간편식 제품의 원재료 모니터링 연구 (Monitoring of Raw Materials for Commercial Home Meal Replacement Products Using DNA Barcode Information)

  • 유연철;홍예원;김정주;이동호;김형수;문귀임;박은미
    • 한국식품위생안전성학회지
    • /
    • 제35권3호
    • /
    • pp.234-242
    • /
    • 2020
  • 본 연구는 최근 소비가 크게 증가하고 있는 가정간편식의 원료에 대한 모니터링을 수행하였다. 다양한 유형의 가정간편식 제품을 구입하여 112개 원료의 DNA 바코드를 분석하였다. 원재료의 종을 동정하기 위하여 DNA 바코드 증폭에 주로 이용되는 미토콘드리아의 16S ribosomal RNA 유전자 부위를 증폭하는 프라이머 세트를 이용하였다. PCR 산물은 정제하여 염기서열을 분석한 후, 이를 이용하여 미국국립보건원에서 제공하는 BLAST search를 수행하였다. GenBank에 등록되어 있는 종의 염기서열과 유사도(Identity)와 매치 점수(Match score)를 비교하여 원료의 종을 판별하였다. 112개의 원료에서 24개의 종(Species)과 3개의 속(Genus)를 동정하였다. 3개의 속은 Identity의 기준이 되는 98% 이내에 해당하는 종이 다수 존재하여 속 수준에서 판별하였다. 판별 결과를 「식품의 기준 및 규격(제2019-57호)」 중 '(별표 1) 사용할 수 있는 원료 목록'에서 제시하는 사용 가능한 원료와 비교하여 국명 및 섭취 가능 여부를 판단하였으며, 등재되어 있지 않은 6개 종은 국제적으로 공인된 기구에서 어획량에 대한 정보를 확인하고, 식용 근거, 학명·이명 등을 확인하여 식용 가능 여부를 판단하였다.

Halotolerant Spore-Forming Gram-Positive Bacterial Diversity Associated with Blutaparon portulacoides (St. Hill.) Mears, a Pioneer Species in Brazilian Coastal Dunes

  • Barbosa Deyvison Clacino;Irene Von Der Weid;Vaisman Natalie;Seldin Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.193-199
    • /
    • 2006
  • Halotolerant spore-forming Gram-positive bacteria were isolated from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides. The different isolates were characterized genetically using an amplified ribosomal DNA restriction analysis (ARDRA), and phenotypically based on their colonial morphology, physiology, and nutritional requirements. Three different 16S rRNA gene-based genotypes were observed at a 100% similarity using the enzymes HinfI, MspI, and RsaI, and the phenotypic results also followed the ARDRA groupings. Selected strains, representing the different ARDRA groups, were analyzed by 16S rDNA sequencing, and members of the genera Halobaeillus, Virgibacillus, and Oceanobacillus were found. Two isolates showed low 16S rDNA sequence similarities with the closest related species of Halobacillus, indicating the presence of new species among the isolates. The majority of the strains isolated in this study seemed to belong to the species O. iheyensis and were compared using an AP-PCR to determine whether they had a clonal origin or not. Different patterns allowed the grouping of the strains according to Pearson's coefficient, and the resulting dendrogram revealed the formation of two main clusters, denoted as A and B. All the strains isolated from the soil were grouped into cluster A, whereas cluster B was exclusively composed of the strains associated with the B. portulacoides roots. This is the first report on the isolation and characterization of halotolerant spore-forming Gram-positive bacteria that coexist with B. portulacoides. As such, these new strains may be a potential source for the discovery of bioactive compounds with industrial value.

A Revision of the Phylogeny of Helicotylenchus Steiner, 1945 (Tylenchida: Hoplolaimidae) as Inferred from Ribosomal and Mitochondrial DNA

  • Abraham Okki, Mwamula;Oh-Gyeong Kwon;Chanki Kwon;Yi Seul Kim;Young Ho Kim;Dong Woon Lee
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.171-191
    • /
    • 2024
  • Identification of Helicotylenchus species is very challenging due to phenotypic plasticity and existence of cryptic species complexes. Recently, the use of rDNA barcodes has proven to be useful for identification of Helicotylenchus. Molecular markers are a quick diagnostic tool and are crucial for discriminating related species and resolving cryptic species complexes within this speciose genus. However, DNA barcoding is not an error-free approach. The public databases appear to be marred by incorrect sequences, arising from sequencing errors, mislabeling, and misidentifications. Herein, we provide a comprehensive analysis of the newly obtained, and published DNA sequences of Helicotylenchus, revealing the potential faults in the available DNA barcodes. A total of 97 sequences (25 nearly full-length 18S-rRNA, 12 partial 28S-rRNA, 16 partial internal transcribed spacer [ITS]-rRNA, and 44 partial cytochrome c oxidase subunit I [COI] gene sequences) were newly obtained in the present study. Phylogenetic relationships between species are given as inferred from the analyses of 103 sequences of 18S-rRNA, 469 sequences of 28S-rRNA, 183 sequences of ITS-rRNA, and 63 sequences of COI. Remarks on suggested corrections of published accessions in GenBank database are given. Additionally, COI gene sequences of H. dihystera, H. asiaticus and the contentious H. microlobus are provided herein for the first time. Similar to rDNA gene analyses, the COI sequences support the genetic distinctness and validity of H. microlobus. DNA barcodes from type material are needed for resolving the taxonomic status of the unresolved taxonomic groups within the genus.

식물역병균 Phytophthora spp.에 특이 길항균인 YNB54 균주의 분류 (Taxonomy of a Soil Bacteria YNB54 Strain Which Shows Specific Antagonistic Activities against Plant Pathogenic Phytophthora spp.)

  • 김삼선;권순우;이선영;김수진;구본성;원항연;김병용;여윤수;임융호;윤상홍
    • 한국미생물·생명공학회지
    • /
    • 제34권2호
    • /
    • pp.101-108
    • /
    • 2006
  • Phytophthora sp.의 균사성장을 특이적으로 저해하는 토양 미생물인 YNB54 균주의 정확한 분류적 위치를 밝히기 위해 Biolog GN2, API 20E와 같은 상업적 생화학 kit, 16S rDNA, DAN-DNA hybridization, GC함량, MIDI 등의 분석을 수행하였다. 다양한 생화학적 kit를 사용한 동정 결과는 이 균주가 다른 어떤 종보다 Enterobacter cloacae와 E. cancerogenus에 보다 더 가까움을 보여주었다. 또한 DAN-DNA hybridization, GC함량, MIDI 분석의 결과들 역시 다른 속 (Citerobacter, Klebsiella, Leclercia)보다 Enterobacter 속에 더 유사함을 암시해 주었다. 그러나 16S rDNA분석에서 이 균주는 Citrobacter freundii(99.4%)와 동일 그룹으로 구분되었지만 Enterobacter, Leclecia, Klebsiella 속 등과도 98%이상의 상동성을 보여주는 polyphyletic 특성을 보였다. 결론적으로 YNB54의 분류 동정을 위한 우리의 조사들은 이 균주가 유전적으로 다양하고 지금까지 아는 것보다 분류학적으로 더 복잡함을 암시해줌에도 불구하고 Enterobacter속임이 가장 유력하다는 것을 보여 주었다.

Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment

  • Lee, Soo-Youn;Kim, Hyeon-Guk;Park, Jong-Bok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment.