Browse > Article

Elucidation of Copper and Asparagine Transport Systems in Saccharomyces cerevisiae KNU5377 Through Genome-Wide Transcriptional Analysis  

KIM IL-SUP (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University)
YUN HAE SUN (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University)
SHIMISU HISAYO (International Patent Depositary, National Institute of Advanced Industrial Science and Technology)
KITAGAWA EMIKO (Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology)
IWAHASHI HITOSHI (International Patent Depositary, Research Institute of Biological Resources, Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology)
JIN INGNYOL (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1240-1249 More about this Journal
Abstract
Saccharomyces cerevisiae KNU5377 has potential as an industrial strain that can ferment wasted paper for fuel ethanol at $40^{\circ}C$ [15, 16]. To understand the characteristics of the strain, genome-wide expression was performed using DNA microarray technology. We compared the homology of the DNA microarray between genomic DNAs of S. cerevisiae KNU5377 and a control strain, S. cerevisiae S288C. Approximately $97\%$ of the genes in S. cerevisiae KNU5377 were identified with those of the reference strain. YHR053c (CUP1), YLR155c (ASP3), and YDR038c (ENA5) showed lower homology than those of S. cerevisiae S288C. In particular, the differences in the regions of YHR053c and YLR155c were confirmed by Southern hybridization, but did not with that of the region of YDR038c. The expression level of mRNA in S. cerevisiae KNU5377 and S288C was also compared: the 550 ORFs of S. cerevisiae KNU5377 showed more than two-fold higher intensity than those of S. cerevisiae S288C. Among the 550 ORFs, 59 ORFs belonged to the groups of ribosomal proteins and mitochondrial ribosomal proteins, and 200 ORFs belonged to the group of cellular organization. DIP5 and GAP1 were the most highly expressed genes. These results suggest that upregulated DIP5 and GAP 1 might take the place of ASP3 and, additionally, the sensitivity against copper might be contributable to the lowest expression level of copper-binding metallothioneins encoded by CUP 1a (YHR053c) and CUP1b (YHR055c) in S. cerevisiae KNU5377.
Keywords
Microarray; Saccharomyces cerevisiae; asparagine transport; methallothionein; copper;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
1 Birgitte R., S. Holmberg, L. D. Olsen, and M. C. Kielland- Brandt. 1998. Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae. Curr. Genet. 33: 171-177   DOI   ScienceOn
2 Church, G. M. and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991-1995
3 Francisca, R. G., P. Sanz, and J. A. Prieto. 1999. Engineering baker's yeast: Room for improvement. Trends Biotechnol. 17: 237-244   DOI   ScienceOn
4 Gross, C. and K. Watson. 1998. Application of mRNA differential display to investigate gene expression in thermotolerant cells of Saccharomyces cerevisiae. Yeast 14: 431-432   DOI   ScienceOn
5 Kim, J. W., S. H. Kim, and I. N. Jin. 1995. The fermentation characteristics of Saccharomyces cerevisiae F38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 624-631
6 Pascale, D. L., J. M. Daran, P. Kotter, T. Petit, M. D. W. Piper, and J. T. Pronk. 2003. Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK 113-7D using oligonucleotide microarrays. FEMS Yeast Res. 4: 259-269   DOI   ScienceOn
7 Oh, K. S., S. K. Oh, Y. W. Oh, M. J. Sohn, S. G. Jung, Y. K. Kim, M. G. Kim, S. K. Rhee, G. Gellissen, and H. A. Kang. 2004. Fabrication of a partial genome microarray of the methylotrophic yeast Hansenula polymorpha: Optimization and evaluation of transcript profiling. J. Microbiol. Biotechnol. 14: 1239-1278
8 Vishwanath, R. I., C. Gross, M. Kellehers, P. O. Brown, and D. R. Winge. 2000. Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J. Biol. Chem. 275: 32310-32316   DOI   ScienceOn
9 Yun, H. S., S. K. Paik, I. S. Kim, I. N. Jin, and H. Y. Shon. 2004. Direct evidence of intracellular alkalinization in Saccharomyces cerevisiae KNU5377 exposed to inorganic acid. J. Microbiol. Biotechnol. 14: 243-249
10 Bengt, L. P., J. O. Lagerstedt, J. R. Pratt, P. G. Johanna, K. Lundh, S. Shokrollahzadeh, and F. Lundh. 2003. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr. Genet. 225: 225-244
11 Kim, J. W., I. N. Jin, and J. H. Seu. 1995. Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant yeast for fuel alcohol production at high temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 617-623
12 Kosman, D. J. 2003. Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 47: 1185-1197   DOI   PUBMED   ScienceOn
13 Choowong, A., T. Homma, H. Tochio, M. Shirakawa, Y. Kaneko, and S. Harashima. 2004. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J. Biol. Chem. 279: 17289- 17294   DOI   ScienceOn
14 Stefan, H. and W. H. Mager. 2003. Yeast Stress Response, pp. 201-240. 2nd Ed. Springer-Verlag Berlin Heidelberg, New York, U.S.A
15 Gasch, A. P. 2002. Yeast genomic expression studies using DNA microarrays. Methods Enzymol. 350: 393-414   DOI
16 Maria, M. P., S. Puig, and D. J. Thiele. 2000. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J. Biol. Chem. 275: 33244-33251   DOI   ScienceOn
17 Gasch, A. P. and M. Werner-Washburne. 2002. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2: 181-192   DOI   ScienceOn
18 Lim, Y. S., S. M. Bae, and K. Kim. 2005. Mass production of yeast spores from compressed yeast. J. Microbiol. Biotechnol. 15: 568-572
19 Strathern, J. N., E. W. Jones, and J. R. Bioach. 1982. The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, pp. 399-461. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
20 Oshima, Y. 1997. The phosphatase system in Saccharomyces cerevisiae. Genes Genet. Syst. 72: 323-334   DOI   PUBMED   ScienceOn
21 Frank, C. P. H., E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, T. R. Golub, E. S. Lander, and R. A. Young. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717-728   DOI   ScienceOn
22 Helen, C. C., B. Ren, S. S. Koh, C. T. Harbison, E. Kanin, E. G. Jennings, T. I. Lee, H. L. True, E. S. Lander, and R. A. Young. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell. 12: 323-337   DOI
23 Audrey, P. G., P. T. Spellman, C. M. Kao, C. H. Orna, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11: 4241-4257   DOI
24 David, G., T. Rushmore, and C. T. Caskey. 1999. DNA chips: Promising toys have become powerful tools. Trends Biochem. Sci. 24: 168-173   DOI   PUBMED   ScienceOn
25 Gross, C. and K. Watson. 1996. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae. Biochem. Biophys. Comm. 220: 766-772   DOI   ScienceOn
26 Paik, S. K., H. S. Yun, H. Y. Sohn, and I. N. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
27 Yun, H. S., S. K. Paik, I. S. Kim, I. K. Rhee, C. B. Yu, and I. Y. Jin. 2003. Stress response of a thermotolerant alcoholfermenting yeast strain, Saccahromyces cerevisiae KNU5377, against inorganic acids and its alcohol fermentation productivity under the presence of these acids. Kor. J. Life Sci. 13: 110-117   DOI
28 Schmitt, M. E., T. A. Brown, and B. L. Trumpower. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18: 3091-3092   DOI   ScienceOn
29 Heo, S. Y., J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and $\beta$- xylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177