• Title/Summary/Keyword: 16S rDNA

Search Result 1,406, Processing Time 0.029 seconds

Molecular Biological Identification of Bacteria in Middle Ear Effusion Using 16S rDNA Multiplex PCR (중이 삼출액 미생물의 16S rDNA 복합중합효소연쇄반응을 이용한 분자생물학적인 진단)

  • 이정구;이인숙;박지연;정상운;오충훈
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.36-39
    • /
    • 2003
  • The rapid and reliable 16S rDNA multiplex polymerase chain reaction (PCR) assay was established to characterize bacterial etiologies of middle ear effusion. These etiologies included Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumonia, which were detected in middle-ear effusion (MEE) samples taken from patient with otitis media. A total of 39 MEE samples were aspirated from 26 patients. DNA was extracted from MEE samples, and PCR was done with DNA extracts by using the common primers, which is localized at C4 region in the 16S rDNA gene of all bacterial species, and species-specific primers: (i) Haemophilus-specific primer, (ii) Moraxella- specific primer, and (iii) Streptococcus-specific primer. Among 39 samples tested, 24 (61.5%) were positive for H. influenzae, 10 (25.6%) were positive for M. catarrhalis, 3(7.7%) were positive for S. pneumonia, and 11 (28%) were negative for 165 rDNA multiplex PCR reaction. Nine samples (28.6%) exhibited a mixed infection and were positive for both H. infuenzae and M. catarrhalis. We suggested that 16S rDNA multiplex PCR is a useful method to identify rapidly for rapid identification of the pathogenic bacteria and characterization of bacterial etiologies of middle ear effusion.

Comparison of metabolic diversity by sole carbon source utilization and genetic diversity by restriction patterns of amplified 16S rDNA (ARDRA)in soil bacterial communities. (토양세균 군집의 대사 다양성과 16S rDNA의 제한효소 지문분석에 의한 유전적 다양성의 비교)

  • 송인근;최영길;김유영;조홍범
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.72-77
    • /
    • 1999
  • To investigate soil bacterial diversity according to vegelalioo types, utilizing ability of sole carbon sources and restriction enzyme patterns of 16s rDNA were analyzed. From the both results; five kinds of soil microbial communities were grouped as forest soil (Quercus mongolica and Pinus densi&ra vegetation), grass-agricultured soil and microbial communities of naked soil. But, both soil microbial communities of directily exlracted from ths soil and indirectly extracted from heterotrophic bacteria that cultured soil in LB medium showed very different similarity.

  • PDF

DNA Barcoding of Scolelepis (Scolelepis) sagittaria (Annelida, Spionidae) in Korea, with a Morphological Variability of the Species

  • Lee, Geon Hyeok;Yoon, Seong Myeong;Min, Gi-Sik
    • Animal Systematics, Evolution and Diversity
    • /
    • v.38 no.3
    • /
    • pp.144-147
    • /
    • 2022
  • The polychaete Scolelepis (Scolelepis) sagittaria was originally described from Japanese waters and subsequently reported from Korean waters. In this study, we determined for the first time the mitochondrial cytochrome c oxidase subunit I (COI), 16S ribosomal DNA (16S rDNA), and nuclear 18S ribosomal DNA (18S rDNA) sequences of Korean specimens of S. (S.) sagittaria. We also assessed intraspecific variation in the shape of the prostomium of this species based on an examination of 247 individuals. All materials were collected from intertidal sandy beaches of the Korea Strait. The molecular data and morphological observations reported herein will contribute to gaining a better understanding of the taxonomic relationships among members of the genus Scolelepis.

Analysis of Bacterial Community Structure in Gossi Cave by Denaturing Gradient Gel Electrophoresis (DGGE) (DGGE를 이용한 동굴 생태계 세균 군집 구조 분석)

  • 조홍범;정순오;최용근
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.213-219
    • /
    • 2004
  • The bacterial community of water stream, soil and guano in Gossi cave was examined by using PCR amplified the 16S rDNA-denaturing gradient gel electrophoyesis (DGGE). In this study, the genetic diversity and the similarity of bacterial community between open area and non - open area toy cave tour were investigated, and the seasonable variation pattern was compared each other. DGGE is attractive technique, as it sepayate same length dsDNA according to sequence variation typical 16S rDNA genes. The diversity and similarity of bacterial community in cave was analyzed by GC341f and PRUN518r primer sets foy amplification of V3 region of eubacteria 16S rDNA. The specific DGGE band profile of the cave water gives the possibility that the specific bacterial cell can be adapting to the specific cave environment and living in the cave. The DGGE band profiles of all samples with guano were compared and analyzed by image analyzer, in which mutual band profile was compared to be and the band intensity of guano was the highest. From these result, it is thought that the guano was main nutrient source and influenced on the community structure of the cave environment where is nutritionally limited. Pseudomonas sp. NZ060, Pseudomonas pseudoalcaligenes, uncultured Variovorax sp. and soli bacterium NS7 were identified to be on some sample from analysing DNA sequence of some DGGE band.

Genetic identification of Aeromonas species using a housekeeping gene, rpoD, in cultured salmonid fishes in Gangwon-Do (강원도 양식 연어과 어류에서 분리된 에로모나스 종의 유전학적 동정)

  • Lim, Jongwon;Koo, Bonhyeong;Kim, Kwang Il;Jeong, Hyun Do;Hong, Suhee
    • Journal of fish pathology
    • /
    • v.30 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • At the present, fish farms are suffering a lot of economic losses due to infectious diseases caused by various pathogens including aeromonad. Aeromonad is ubiquitous bacteria that causes infectious diseases. At least 26 species in the genus Aeromonas have been reported to cause fatal infections not only in salmonid fishes, but also in other freshwater and seawater fishes. Molecular techniques based on nucleic acid sequences of 16S rDNA and housekeeping genes can be used to identify the Aeromonas species. In this study, The genus Aeromonas was isolated from salmonid fishes of sixteen fish farms in Gangwon-Do, Korea and phylogenetically identified based on the sequences of 16S rDNA and housekeeping genes for Aeromonad, i.e. RNA polymerase sigma factor ${\sigma}^{70}$ (rpoD) or DNA gyrase subunit B (gyrB). Consequently, 96 strains were collected from Atlantic salmon (Salmo salar), coho salmon (Oncorhynchus kisutch), masou salmon (Oncorhynchus masou) and rainbow trout (Oncorhynchus mykiss), and 36 isolates were identified as the genus Aeromonas by 16S rDNA analysis. Thirty six Aeromonad isolates were further analysed based on rpoD or gyrB gene sequences and found Aeromonas salmonicida (24 isolates), A. sobria (10 isolates), A. media (1 isolates) and A. popoffii (1 isolates), indicating that A. salmonicida is a main infectious bacteria in Salmonid fishes in Gangwon-Do. It was also proved that the phylogenetic identification of Aeromonas species based on the sequences of housekeeping gene is more precise than the 16S rDNA sequence.

Microbial Genome Analysis and Application to Clinical Bateriology (미생물의 유전자(Genome) 해석과 임상세균학에 이용)

  • Kim, Sung-Kwang
    • Journal of Yeungnam Medical Science
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • With the establishment of rapid sequence analysis of 16S rRNA and the recognition of its potential to determine the phylogenetic position of any prokaryotic organism, the role of 16S rRNA similarities in the present species definition in bacteriology need to be clarified. Comparative studies clearly reveal the limitations of the sequence analysis of this conserved gene and gene product in the determination of relationship at the pathogenic strain level for which DNA-DNA reassociation experiments still constitute the superior method. Since today the primary structure of 16S rRNA is easier to determine than hybridization between DNA strands, the strength of the sequence analysis is to recognize the level at which DNA pairing studies need to be performed, which certainly applies to similarities of 97% and higher.

  • PDF

Identification of Bacteria from Periapical Abscess Using 16S rDNA Clone Libraries. (16S rDNA 클론 Libraries를 이용한 치근단 농양 병소의 세균 동정)

  • 유소영;김미광;김화숙;황호길;김평식;임성훈;오상호;민정범;국중기
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.195-198
    • /
    • 2004
  • Molec-ular analysis was performed on the microflora found In the necrotic pulpal tissue collected from 5 infected root canals that were diagnosed as a periapical abscess. 16S rRNA coding gene (rDNA) library construction and sequencing were performed in order to identify the microflora, The 16S rDNA sequences from 278 clones were identified by a comparison with the database sequence in GenBank. Three phylum and 31 species, which were related to the oral microflora, were identified from the 3 samples (No. 87, 105, and 115). Dialister invisus (5.6%), Peptostreptococcus micron (18.3%), and Veillonella sp. (3.3%) were the organism present in all tee samples. Lac-tobacillusfementum (2.8%),Eubacterumsp./E. infirmum (6.7%), Shuttleworthiasatelles (3.9%), Psudorarnihacfer alactoiyticus (13.3%), Bulleidia moorei (2.8%), and Prevotella denticola (1.1%) were found in two samples. Two phylum and low species of environmental microflora were identified from 2 samples (No.95 and 101). The reason for this might be contamination of the samples with dental water. These results showed that molecular analysis could reveal more diverse microflora that are associated with endodontic infections than that revealed by conventional cultural methods. In addition, these results may of for the basic data to epidemiological studies related with endodontic infection.

Metagenomic Analysis of BTEX-Contaminated Forest Soil Microcosm

  • Ji, Sang-Chun;Kim, Doc-Kyu;Yoon, Jung-Hoon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.668-672
    • /
    • 2007
  • A microcosmal experiment using a metagenomic technique was designed to assess the effect of BTEX (benzene, toluene, ethylbenzene, and xylenes) on an indigenous bacterial community in a Daejeon forest soil. A compositional shift of bacterial groups in an artificial BTEX-contaminated soil was examined by the 16S rDNA PCR-DGGE method. Phylogenetic analysis of 16S rDNAs in the dominant DGGE bands showed that the number of Actinobacteria and Bacillus populations increased. To confirm these observations, we performed PCR to amplify the 23S rDNA and 16S rDNA against the sample metagenome using Actinobacteria-targeting and Bacilli-specific primer sets, respectively. The result further confirmed that a bacterial community containing Actinobacteria and Bacillus was affected by BTEX.

A STUDY ON THE IDENTIFICATION OF Porphyromonas endodontalis BY PCR USING SPECIES SPECIFIC PRIMERS FOR THE 16S rDNA (16S rDNA sequence에 대한 종특이성 primer를 이용한 중합효소연쇄반응증폭에 의한 Porphyromonas endodontalis의 동정에 관한 연구)

  • Eom, Seung-Hee;Lim, Sung-Sam;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.13-25
    • /
    • 1999
  • P. endodontalis which was known to be associated with the infected root canals and periapical lesions is very difficult to detect by culture methods or traditional methods. Detection of bacteria using polymerase chain reaction(PCR) for 16S ribosomal DNA(rDNA) is fast, simple, and accurate with relatively small amount of target cells. 16S rDNA consist of conserved regions those are same to all species, and variable regions which represent species specificity. The 16S rDNA sequences of P. endodontalis and P. gingivalis were aligned and two highly variable regions were selected as a pair of species specific oligonucleotide primers for P. endodontalis. And then the pair of primers for PCR amplification was synthesized to identify P. endodontalis. The sequences of the species specific primers for the 16S rDNA of P. endodontalis were as follows ; sense primer[endo1]: 5'-CTATATTCTTCTTTCTCCGCATGGAGGAGG-3' antisense primer[endo2]: 5'-GCATACCTTCGGTCTCCTCTAGCATAT-3' In this study, for the identification of P. endodontalis without culture from the mixed clinical samples, PCR was done with species specific primers for the 16S rDNA sequences of P. endodontalis. The results were as follows : 1. The species specificity of the primers for the 16S rDNA of P. endodntalis was determined by the PCR methods. About 490bp amplicon which was specific only for P. endodntalis was produced with P. endodontalis. No amplicon was produced by PCR with other strains similar to P. endodontalis. 2. The synthesized species specific primers reacted with conventionally identified P. endodontalis which we have in conservative dentistry laboratory. 3. The identification of P. endodontalis using PCR technique with samples collected from infected root canals or periapical lesions was more sensitive than that of culture methods. 4. Seven samples revealed including P. endodontalis by PCR technique. Five of them were related with pains, two of them with sinus tract, three of them with foul odor, and three of them with purulent drainage. P. endodontalis was shown to have great relation with pains.

  • PDF

Diversity of Marine Microbes by PCR-DGGE (PCR-DGGE를 이용한 해양미생물의 다양성 조사)

  • Kim, Yeong-Jin;Cho, Hyo-Jin;Yu, Sun-Nyoung;Kim, Kwang-Youn;Kim, Hyeung-Rak;Ahn, Soon-Cheol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.356-361
    • /
    • 2007
  • Recently, the development of various culture-independent identification techniques for environmental microbes has greatly enhanced our knowledge of microbial diversity. In particular, denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments, generated using the polymerase chain reaction (PCR) is frequently used to examine the diversity of environmental bacterial populations. This method consists of direct extraction of the environmental DNA, amplification of the 200-600 bp 16S rDNA fragments with universal primers, and separation of the fragments according to their melting point on a denaturing gradient gel. In this study, we investigated the seaside microbial community in coastal areas of Busan, Korea, using culture-independent techniques. First, marine genomic DNA was extracted from seawater samples collected at Songjeong, Gwangahn, and Songdo Beaches. Then, PCR was used to amplify the bacterial 16S rDNA using universal primers, and DGGE was used to separate the amplified 500 bp 16S rDNA fragments. Finally, the tested 16S rDNA genes were further analyzed by sequencing. Based on these experiments, we found that DGGE analysis clearly showed variation among the regional groups. It can be used to monitor rapid changes in the bacterial diversity of various environments. In addition, the sequence analysis indicated the existence of many unculturable bacteria, in addition to Arcobacter, Pseudoaltermonas, and Vibrio species.