• Title/Summary/Keyword: 150 mesh screen

Search Result 18, Processing Time 0.023 seconds

Impact of Fines Properties on Fiber Furnish Quality (미세분의 성질이 지료특성에 미치는 영향)

  • Cho Wook-Yeon;Seo Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.2 s.110
    • /
    • pp.1-10
    • /
    • 2005
  • Removal of fines from fiber furnish by fractionation improves drainage, but decreases fiber bonding in paper. Fines can be again classified by their size such as the fines that passed 150 and 400 mesh screen, respectively. A hypothesis of different properties between these two kinds of fines was tested. Four different furnishes (SwBKP, HwBKP, KOCC, and BCTMP) were refined in two levels, and all their furnish and handsheet properties were compared in respect of their fines. KOCC fines gave the slowest drainage and least contribution to breaking length while BCTMP fines the fastest drainage and the highest contribution to breaking length. Removal of the fines that passed 400 mesh screen gave high improvement in drainage and large decrease in breaking length. Only KOCC fines removal gave more positive results where there were large improvement in drainage but only small decrease in breaking length.

Theoretical Analysis of Heat Transportation Limitation by Porosity of Wick in Screen Mesh Wick Heat Pipe (스크린메쉬윅 히트파이프에서 윅의 기공율변화에 따른 열수송한계의 이론적 고찰)

  • Lee, Ki-Woo;Park, Ki-Ho;Chun, Won-Pyo;Lee, Wook-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1-6
    • /
    • 2003
  • The purpose of the present study is to investigate the capillary heat transportation limitation in heat pipe according to the change of screen mesh wick porosity. Diameter of pipe was 6 mm, and mesh numbers are 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of wick porosity and mesh number, the capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, and capillary heat transportation limitation are analyzed by theoretical design method of a heat pipe. As some results, the capillary heat transportation limitation in screen mesh wick heat pipe is largely affected by wick porosity and mesh number.

  • PDF

An Experimental Study on the Thermal Performance of a Flat-Ship Heat Pipe with Inner Grooves and Screen Mesh Cover (내부에 그루브와 스크린 메쉬를 갖는 평판 스트립형 히트파이프의 열성능에 대한 실험적 연구)

  • Park Soo Yong;Boo Joon Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.805-813
    • /
    • 2005
  • The thermal performance of a flat-strip heat pipe with inner grooves and the screen mesh cover was investigated experimentally. The heat pipes were made of 2024 aluminum alloy of which the dimensions were 30 (W) $\times$ 4 (T) $\times$ 150 (L) mm. The cross sectional dimensions of inner groove were 0.4$\times$0.9 mm and the space between grooves was 0.6 mm. To enhance the capillary force, foe screen meshes were attached to cover the grooved inner surface. In the grooved heat pipes without screen mesh cover, the maximum thermal load of 180 W (12 W/$cm^2$) was achieved for operating temperature below $130^{\circ}C$ at horizontal position. The heat pipes with screen mesh cover showed the thermal resistances less than one third of those without screen mesh cover, and showed less fluctuation in the thermal resistance values. Furthermore, the thermal performance of the former exhibited less dependence on the tilt angle and the fill charge ratio.

Theoretical Analysis of Factors Affecting to Heat Transfer Limitation in Screen Mesh Wick Heat Pipe (스크린 메쉬윅 히트파이프의 열전달한계에 영향을 미치는 인자의 이론적 해석)

  • 이기우;노승용;박기호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.880-889
    • /
    • 2002
  • The purpose of the present study is to examine the factors affecting the heat transfer limitations of screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6 mm, and mesh numbers are 50, 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, capillary limitation, entrainment limitation, sonic limitation and boiling limitation we analyzed by theoretical design method of a heat pipe. As some results, the capillary limitation in small diameter of heat pipe is largely affected by mesh number and wick layer.

Basic Study on the Regenerator of Stilting Engine (III) - Heat Transfer and Flow Friction Characteristic of the Regenerator with Combined Wire-mesh Matrix - (스털링 기관용 재생기에 관한 기초 연구 (III) - 복합메쉬 철망을 축열재로 한 재생기의 전열 및 유동손실 특성 -)

  • Lee S. M.;Kim T. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.195-201
    • /
    • 2005
  • The output of Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, several kinds of combined wire screen meshes were used. The results are summarized as follows; The packed meshes with high mesh no. in the side of heater part of regenerator showed effective than the packed meshes with low mesh no. in the side of cooler part of regenerator. The temperature difference and pressure drop of the regenerator were not made by the specific surface area of wire screen meshes but by the minimum free-flow area to the total frontal area. Among the No. 150 single screen meshes, 200-60 combined meshes, the 200-150-100 combined meshes showed the highest in effectiveness.

An Experimental Study on Heat Transfer Performances in 8mm-diameter Heat Pipes with Screen Mesh Wick (스크린 메쉬 윅을 삽입한 8mm 히트파이프에서 열전달 성능에 관한 실험적 연구)

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Lee, Kye-Jung;Yoo, Seong-Yeon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.48-53
    • /
    • 2001
  • This experimental study is to research heat transfer characteristics in copper-water heat pipes with screen wick, the 150 and 200-mesh. Recent advances in the miniaturization and large capacity of electronic devices have had a major impact on the design of electronic equipment. As a result, a high-performance cooling system is needed. Experimental variables are inclination angle, number of layer and temperature of cooling water. The distilled water was used for the working fluid. At a inclination angle $6^{\circ}$, the 200-mesh screen wick 3-layer is shown the best heat transfer performance.

  • PDF

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

Study on the Capillary Limitation in Copper-Water Heat Pipes with Screen Wicks

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Rhi, Seok-Ho;Yoo, Seong-Yeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • This paper is to study the heat transfer performance of the copper-water heat pipe with screen wicks. Recently, the semiconductor capacity of an electronic unit becomes larger, but its size becomes much smaller. As a result, a high- performance cooling system is needed. Experimental variables are inclination angles, temperatures of cooling waters and the mesh number of screen wicks. The distilled water was used as a working fluid. Based on the experimental results, when the copper-water heat pipe of 6mm diameter is used at the top heat mode, the heat transfer performance of 100 mesh 2 layers heat pipe is better than that of 150 and 200 mesh. The thermal resistance of the two layers with the 100-mesh screen was 0.7-$0.8^{\circ}C$/W.

Analysis of the Effect of Screen Printing Variables on Thick Film Thickness (스크린인쇄조건에 따른 후막인쇄물의 잉크층 두께에 관한 분석)

  • Lim, Kyu-Jin;Yi, Arm;Shin, Jong-Soon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.2
    • /
    • pp.19-30
    • /
    • 2002
  • Four screen mesh counts of 100, 150, 200, and 305 threads per inch are chosen and a designed test figure is exposed on them for printing experiment to measure the ink deposit thickness. Among a number of variables, the ink viscosity, the screen gap and the squeegee pressure and speed are estimated with their effected thickness. These variables affect as much as around 50% compared with the theoretical ink volume listed by the mesh manufacturer and each variable has different influence on the thickness. The data and graphs have been analyzed for the thick film production.

  • PDF

Flexible and Transparent CuO/Cu/CuO Electrodes Grown on Flexible PET Substrate by Continuous Roll-to-roll Sputtering for Touch Screen Panels Cells

  • Kim, Dong-Ju;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.217.2-217.2
    • /
    • 2014
  • We prepared a flexible and transparent CuO/Cu/CuO multilayer electrodes on a polyethylene terephthalate (PET) substrate using a specially designed roll-to-roll sputtering system at room temperature for GFF-type touch screen panels (TSPs). By the continuous roll-to-roll sputtering of the CuO and Cu layer, we fabricated a flexible CuO(150nm)/Cu(150nm)/CuO(150nm) multilayer electrodes with a sheet resistance of $0.289{\Omega}/square$, resistivity of $5.991{\times}10^{-23}{\Omega}-cm$, at the optimized condition without breaking the vacuum. To investigate the feasibility of the CuO/Cu/CuO multilayer as a transparent electrode for GFF-type TSPs, we fabricated simple GFF-type TSPs using the diamond patterned CuO/Cu/CuO electrode on PET substrate as function of mesh line width. Using diamond patterned CuO/Cu/CuO electrode of mesh line $5{\mu}m$ with sheet resistance of 38 Ohm/square, optical transmittance of 90% at 550 nm and an average transmittance of 89% at wavelength range from 380 to 780 nm, we successfully demonstrated GFF-type touch panel screens (TPSs). The successful operation of GFF-type TPSs with CuO/Cu/CuO multilayer electrodes indicates that the CuO/Cu/CuO multilayer is a promising transparent electrode for large-area capacitive-type TPSs due to its low sheet resistance and high transparency.

  • PDF