• Title/Summary/Keyword: 14-3-3 associated proteins

Search Result 72, Processing Time 0.031 seconds

Identification of Proapoptopic, Anti-Inflammatory, Anti-Proliferative, Anti-Invasive and Anti-Angiogenic Targets of Essential Oils in Cardamom by Dual Reverse Virtual Screening and Binding Pose Analysis

  • Bhattacharjee, Biplab;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3735-3742
    • /
    • 2013
  • Background: Cardamom (Elettaria cardamom), also known as "Queen of Spices", has been traditionally used as a culinary ingredient due to its pleasant aroma and taste. In addition to this role, studies on cardamom have demonstrated cancer chemopreventive potential in in vitro and in vivo systems. Nevertheless, the precise poly-pharmacological nature of naturally occurring chemo-preventive compounds in cardamom has still not been fully demystified. Methods:In this study, an effort has been made to identify the proapoptopic, anti-inflammatory, anti-proliferative, anti-invasive and anti-angiogenic targets of Cardamom's bioactive principles (eucalyptol, alpha-pinene, beta-pinene, d-limonene and geraniol) by employing a dual reverse virtual screening protocol. Experimentally proven target information of the bioactive principles was annotated from bioassay databases and compared with the virtually screened set of targets to evaluate the reliability of the computational identification. To study the molecular interaction pattern of the anti-tumor action, molecular docking simulation was performed with Auto Dock Pyrx. Interaction studies of binding pose of eucalyptol with Caspase 3 were conducted to obtain an insight into the interacting amino acids and their inter-molecular bondings. Results:A prioritized list of target proteins associated with multiple forms of cancer and ranked by their Fit Score (Pharm Mapper) and descending 3D score (Reverse Screen 3D) were obtained from the two independent inverse screening platforms. Molecular docking studies exploring the bioactive principle targeted action revealed that H- bonds and electrostatic interactions forms the chief contributing factor in inter-molecular interactions associated with anti-tumor activity. Eucalyptol binds to the Caspase 3 with a specific framework that is well-suited for nucleophilic attacks by polar residues inside the Caspase 3 catalytic site. Conclusion:This study revealed vital information about the poly-pharmacological anti-tumor mode-of-action of essential oils in cardamom. In addition, a probabilistic set of anti-tumor targets for cardamom was generated, which can be further confirmed by in vivo and in vitro experiments.

A protein interactions map of multiple organ systems associated with COVID-19 disease

  • Bharne, Dhammapal
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.14.1-14.6
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) is an on-going pandemic disease infecting millions of people across the globe. Recent reports of reduction in antibody levels and the re-emergence of the disease in recovered patients necessitated the understanding of the pandemic at the core level. The cases of multiple organ failures emphasized the consideration of different organ systems while managing the disease. The present study employed RNA sequencing data to determine the disease associated differentially regulated genes and their related protein interactions in several organ systems. It signified the importance of early diagnosis and treatment of the disease. A map of protein interactions of multiple organ systems was built and uncovered CAV1 and CTNNB1 as the top degree nodes. A core interactions sub-network was analyzed to identify different modules of functional significance. AR, CTNNB1, CAV1, and PIK3R1 proteins were unfolded as bridging nodes interconnecting different modules for the information flow across several pathways. The present study also highlighted some of the druggable targets to analyze in drug re-purposing strategies against the COVID-19 pandemic. Therefore, the protein interactions map and the modular interactions of the differentially regulated genes in the multiple organ systems would incline the scientists and researchers to investigate in novel therapeutics for the COVID-19 pandemic expeditiously.

Exposure to Cerium Oxide Nanoparticles Is Associated With Activation of Mitogen-activated Protein Kinases Signaling and Apoptosis in Rat Lungs

  • Rice, Kevin M.;Nalabotu, Siva K.;Manne, Nandini D.P.K.;Kolli, Madhukar B.;Nandyala, Geeta;Arvapalli, Ravikumar;Ma, Jane Y.;Blough, Eric R.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.48 no.3
    • /
    • pp.132-141
    • /
    • 2015
  • Objectives: With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide ($CeO_2$) nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs. Methods: Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline) or $CeO_2$ nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis. Results: No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after $CeO_2$ instillation (p<0.05). Conclusions: Taken together, these data suggest that high-dose respiratory exposure to $CeO_2$ nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response.

Expression Characteristics of Proteins of the Insulin-like Growth Factor Axis in Non-small Cell Lung Cancer Patients with Preexisting Type 2 Diabetes Mellitus

  • Ding, Jing;Tang, Jie;Chen, Xin;Men, Hai-Tao;Luo, Wu-Xia;Du, Yang;Ge, Jun;Li, Cong;Chen, Ye;Cheng, Ke;Qiu, Meng;Liu, Ji-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5675-5680
    • /
    • 2013
  • Background: Preexisting type 2 diabetes mellitus (T2DM) affects the prognosis and mortality of patients with some cancers. Insulin like growth factor (IGF) and insulin receptor (IR) signaling axes play important roles in both cancer and diabetes development. We aimed to explore the expression characteristics of proteins in IGF/IR axis in non-small cell lung cancer (NSCLC) cases with preexisting T2DM. Methods: Fifty-five NSCLC patients with preexisting T2DM were retrospectively included and matched by 55 NSCLC without diabetes at a 1:1 ratio. The expression of proteins in IGF/IR axis was detected by immunohistochemical staining. Clinicopathological data were collected to analyze their relationship with the protein expression. Results: Both IGF 1 receptor (IGF-1R) and insulin receptor substrate 2 (IRS-2) showed higher expression in the NSCLC with T2DM group, compared with those without T2DM. The high expression of IGF-1R and IRS-2 were found to be negatively associated with lymph node metastases and T staging in the T2DM group, respectively, and IRS-2 expression was also found more in the subgroup whose T2DM duration was more than 4 years. No difference was detected in the expression of IRS-1, IGF-1, IGF-2, IGFBP3, IR and mTOR between groups with or without T2DM. Conclusion: Our study found higher expression of IGF-1R and IRS-2 proteins in NSCLC patients with preexisting T2DM, and that there was an association with early stage NSCLC, which suggested that IGF signaling may play an important early event in development of NSCLC associated with diabetes.

Expressions of Tumor-Related Proteins and $TGF-{\beta}1$ in Colon Cancer

  • Kim, Tai-Jeon;Kim, Tae-Geun
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • This study was designed to investigate the correlation between the expression rate of p53 and p21 proteins, c-erbB-2 oncoprotein and $TGF-{\beta}1$ and tumor prognostic factors in colon cancer including the tumor size, histological differentiation and Dukes' stage. The expression rate of p53 protein was 11.4% (4 cases) at well differentiation, 48.6% (17 cases) at moderately differentiation, and 17.1% (6 cases) at poorly differentiation. In other words, the poorer differentiation, the higher the expression rate of p53 protein (P<0.05). The expression rate of p21 protein was 17.1% (6 cases) at well differentiation, 40.0% (14 cases) at moderately differentiation, and 8.6% (3 cases) at poorly differentiation, indicating that, as the histological malignant degeneration progressed, the expression rate of p21 protein decreased distinctively (P<0.05). However, the correlation of the above mentioned proteins with tumor size and Dukes' stage was not recognized. The expression rate of c-cerbB-2 oncoprotein was 11.4% (4 cases) at well differentiation, 54.3% (19 cases) at moderately differentiation, and 17.1% (6 cases) at poorly differentiation, indicating that the poorer differentiation, the higher expression rate of c-erbB-2 oncoprotein (P<0.05). The expression rate of $TGF-{\beta}1$ was 17.1% (6 cases) at well differentiation, 48.6% (17 cases) at moderately differentiation, and 11.4% (4 cases) at poorly differentiation. As Dukes' stage progressed, the expression rate of $TGF-{\beta}1$ was 8.6% (3 cases) in stage A, 20.0% (7 cases) in stage B, 37.1 % (13 cases) in stage C, and 11.4% (4 cases) in stage D. There was a difference in expression rates between Dukes' stages (P<0.05). In 10 cases, p53 protein was positive while p21 protein was negative, and in 6 cases, p53 protein was negative whereas p21 was positive (P<0.05). Therefore, a statistically significant inverse correlation between the expression rate of p53 protein and that of p21 protein was observed. In conclusion, since there was a signigicant correlation between histological differentiation of colon cancer and the expressions of p53 and p21 proteins and c-erbB-2 oncoprotein, and between Dukes' stage and the expression of $TGF-{\beta}1$, it was conformed that the overexpression of p53 and p21 proteins, c-erbB-2 oncoprotein, and $TGF-{\beta}1$ is closely associated with the occurrence of colon cancer and its progress. Accordingly, this study may be greatly beneficial to the presumption of diagnosis, treatment and prognosis of colon cancer patients.

  • PDF

Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18

  • Lee, Hye Seon;Kim, Min Wook;Jin, Kyeong Sik;Shin, Ho-Chul;Kim, Won Kon;Lee, Sang Chul;Kim, Seung Jun;Lee, Eun-Woo;Ku, Bonsu
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.26-37
    • /
    • 2021
  • Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.

Terpinen-4-ol Induces Autophagic and Apoptotic Cell Death in Human Leukemic HL-60 Cells

  • Banjerdpongchai, Ratana;Khaw-on, Patompong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7537-7542
    • /
    • 2013
  • Background: Terpinen-4-ol, a monoterpene, is found as the main component of essential oil extracts from many plants. In this study apoptotic and autophagic types of cell death induced by terpinen-4-ol and associated mechanisms were investigated in human leukemic HL-60 cells. Materials and Methods: The cytotoxicity of human leukemic U937 and HL-60 cells was determined by MTT assay. Cytochrome c release, expression of Bax, Bcl-2, Bcl-xl and cleaved Bid were determined by Western blotting. Cell morphology was examined under a transmission electron microscope. LC3-I/II, ATG5 and Beclin-1 levels were detected by immunoblotting. Results: Terpinen-4-ol exhibited cytotoxicity to human leukemic HL-60 but not U937 cells. The apoptotic response to terpinen-4-ol in HL-60 cells was due to induction of cytochrome c release from mitochondria and cleavage of Bid protein after the stimulation of caspase-8. There was a slightly decrease of Bcl-xl protein level. The characteristic cell morphology of autophagic cell death was demonstrated with multiple autophagosomes in the cytoplasm. At the molecular level, the results from Western blot analysis showed that terpinen-4-ol significantly induced accumulation of LC3-I/II, ATG5 and Beclin-1, regulatory proteins required for autophagy in mammalian cells. Conclusions: Terpinen-4-ol induced-human leukemic HL-60 cell death was via both autophagy and apoptosis.

Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles (골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

Monitoring the Change of Protein Expression in Human Colon Cancer Cell SNU-81 treated with the Water-Extract of Coptis japonica (황련 열수추출물을 처치한 인간 대장암 세포 SNU-81에서의 단백질 발현 변화)

  • Yoo, Tae-Mo;Kim, Byung-Soo;Yoo, Byong-Chul;Yoo, Hwa-Seung
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2009
  • Background : Anticancer effects of herbal medicine have been reported in various types of cancer, but the systematic approaches to explain molecular mechanism(s) are not established yet. Objective : To find the anticancer-effect and mechanism(s) of Water Extract of Coptis japonica (WECJ) colon cancer cell (SNU-81). Methods : We first selected 11 herbals, and anti-cancer effects of water-extracts from those herbals have been tested in human colon cancer cell line, SNU-81. Among the tested herbals, the WECJ significantly reduced proliferation of SNU-81. To establish a basis of understanding for anti-cancer mechanism, whole proteins have been obtained from SNU-81 harvested at 48 and 96 hrs after the treatment of WECJ, protein expression has been profiled by 2DE-based proteomic approach. Results : Various changes of the protein expression have been monitored, and most frequent dysregulation was found in the molecular chaperons including heat shock protein 90-alpha (Hsp90-alpha), 14-3-3 protein epsilon, T-complex protein 1 subunit alpha, protein disulfide-isomerase A3, and calreticulin. Interestingly, proliferation-associated protein 2G4 has been up-regulated, and it suggests the possible effect of Coptis japonica on ErbB3-regulated signal transduction pathway and growth control of human colon cancer cells. Conclusion : Based upon the present findings, the further study will focus on monitoring various cancer survival factors after artificial regulation of the proteins identified, and it would be the basis for the understanding of the Coptis japonica anti-cancer effect(s) at the molecular level.

Characterization of Mitochondrial Plasmids from Pleurotus spp. (Pleurotus속 균주들의 미토콘드리아 플라스미드 특성)

  • 김은경;구용범;차동렬;하영칠;노정혜
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.141-147
    • /
    • 1993
  • Plasmid DNAs were detected from the mitochondrial fraction of four strains of whiterot fungus, Pleurotus ostreatus. The size of the plasmids were 10.2 and 7.2 kb in strain NFFA 2, 10.2 kb in NFFA 4001, 11.2 kb in NFFA 4501, and 10.2 and 11.2 kb in KFCC 11635. The two strains,NFFA 2ml and NFFA 2m2, which are mutant derivatives of NFFA 2, did not contain any plasmids. The cleavage by proteinase K indicated that these plasmids have DNA ends associated with proteins. In digestion with proteinase K all the plasm ids remained resistant to lambda exonuclease which hydrolyzes DNA from 5' ends and were sensitive to exonuclease III which hydrolyzes DNA from 3' ends. This suggests that the plasmids are linear double-stranded DNA and the terminal proteins are covalently linked to 5' ends of plasm ids. In order to find relationship between these plasmids, hybridization of plasm ids by each separate plasmid DNA was done. The result indicated that the plasmids can be classified into at least 3 groups. Plasmids of group I were present in all the P ostreatus. More mitochondrial plasmids were detected in P cornucopiae. P ,florida, P pulmonarius, P sajor-caju, and P spodoleucus. The size of plasmids ranged between 7.2 kb and 14 kb. All the species except P cornucopiae contained plasmids of approximately 10 kb which hybridized with the 10.2 kb plasmid (group I) of P ostreatus NFFA 2.

  • PDF