• Title/Summary/Keyword: 14 MeV

Search Result 150, Processing Time 0.027 seconds

Novel bricks based lightweight Vietnam's white clay minerals for gamma ray shielding purposes: An extensive experimental study

  • Ta Van Thuong;O.L. Tashlykov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.666-672
    • /
    • 2024
  • In the present work, a new brick series based on the Vietnamese white clay minerals from the Bat Trang was fabricated to be applied in the radiation protection applications during the decommissioning of the nuclear power reactors. The bricks were constructed under various pressure rates varied from 7.61 MPa to 114.22 MPa. The influence of pressure rate on the physical and γ-ray shielding properties were investigated in the study. The experimental measurement for the material's density using the MH-300A density meter showed an enhancement in the prepared bricks' density by 22.5 % with increasing the applied pressure rate while the bricks' porosity reduced by 31.2 % when the pressure rate increased from 7.61 MPa to 114.22 MPa. The increase in the fabricated bricks density and the reduction in their porosities enhances the bricks' linear attenuation coefficients as measured by the NaI (Tl) detector along the energy range extended from 0.662 MeV to 1.332 MeV. The linear attenuation coefficient increased by 13.8 %, 17.6 %, 17.0 %, and 17.1 % at gamma ray energies of 0.662 MeV, 1.173 MeV, 1.252 MeV, and 1.332 MeV, respectively. The enhancement in the linear attenuation coefficient increases the bricks' radiation protection efficiency by 10.22 %, 14.48 %, 14.09 %, and 14.26 % at gamma ray energies of 0.662 MeV, 1.173 MeV, 1.252 MeV, and 1.332 MeV, respectively.

SEPARATION OF GAMMA-RAYS PRODUCTION FROM $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ REACTIONS USING DOPPLER SHIFT EFFECT

  • Kim, Y.K.;Ha, J.H.;Youn, M.;Han, S.H.;Chung, C.E.;Moon, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.287-290
    • /
    • 2001
  • The 9.17MeV gamma-rays from the $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ reactions were measured. The incident 9.17MeV gamma-ray was produced from the $^{13}C(p,\;{\gamma})^{14}N$ reaction at Ep=1.75MeV resonance. The 1.75MeV proton beam was accelerated using the 3MV SNU-AMS Tandetron and 1.7MV KIGAM Tandem accelerators. The enriched 13C target was $121{\mu}g/cm^2$ self-supporting foil, and we used liquid nitrogen as a resonant absorption target. We used a HP-Ge detector with 30% efficiency and less 2keV energy resolution. We developed new method to detect the scattered 9.17MeV gamma-ray from the nitrogen target by using the energy difference between the Doppler shifted gamma-ray from the $^{13}C(p,\;{\gamma})^{14}N$ reaction and the resonant absorbed and rescattered gamma-ray from the $^{14}N({\gamma},\;{\gamma})^{14}N$ reaction.

  • PDF

Defect Formatìon and Annealìng Behavìor in MeV Si Self-Implanted Silicon (MeV Si 자기 이온주입된 단결정 Silicon내의 결함 거동)

  • Cho, Nam-Hoon;Jang, Ki-Wan;Suh, Kyung-Soo;Lee, Jeoung-Yong;Ro, Jae-Sang
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.733-741
    • /
    • 1996
  • In this study MeV Si self ion implantations were done to reveal the intrinsic behavior of defect formation by excluding the possibility of chemical interactions between substrate atoms and dopant ones. Self implantations were conducted using Tandem Accelerator with energy ranges from 1 to 3 MeV. Defect formation by high energy ion implantation has a significant characteristics in that the lattice damage is concentrated near Rp and isolated from the surface. In order to investigate the energy dependence on defect formation, implantation energies were varied from 1 to 3 MeV under a constant dose of $1{\times}10^{15}/cm^2$. RBS channe!ed spectra showed that the depth at which as-implanted damaged layer formed increases as energy increases and that near surface region maintains better crystallinity as energy increases. Cross sectional TEM results agree well with RBS ones. In a TEM image as-implanted damaged layer appears as a dark band, where secondary defects are formed upon annealing. In the case of 2 MeV $Si^+$ self implantation a critical dose for the secondary defect formation was found to be between $3{\times}10^{14}/cm^24$ and $5{\times}10^{14}/cm^2$. Upon annealing the upper layer of the dark band was removed while the bottom part of the dark band did not move. The observed defect behavior by TEM was interpreted by Monte Carlo computer simulations using TRIM-code. SIMS analyses indicated that the secondary defect formed after annealing gettered oxygen impurities existed in silicon.

  • PDF

Measurement of $^{93}Nb(n,n{\alpha})^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$ and $^{93}Nb(n,2n)^{92m}Nb$ Cross Sections for 14 MeV Neutrons ($^{93}Nb(n,n{\alpha})^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$$^{93}Nb(n,2n)^{92m}Nb$ 반응의 14 MeV 중성자 반응 단면적 측정)

  • Kim, Y.S.;Kim, N.B.;Chung, K.H.;Bak, H.I.
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.92-96
    • /
    • 1986
  • The $^{93}Nb(n,n\alpha)^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$ and $^{93}Nb(n,2n)^{92m}Nb$ cross sections at a neutron energy of 14.6 MeV have been measured relative to the $^{27}Al(n,p)^{27}Mg$ and $^{27}Al(n,{\alpha})^{24}Na$ cross sections. A small accelerator utilizing $T(D,n)^4He$ reaction was used as a neutron source and the neutron energy spread is about 0.4MeV at the sample. All induced activities were measured with a 70cc HPGe detector in the same geometry.

  • PDF

Effect of an Acrylic Plate and SSD on Dose Profile and Depth Dose Distribution of 9 MeV Electron Beams (에너지 저하체로서 아크릴과 SSD 가 9MeV 전자선의 측방 및 깊이선량분포에 미치는 효과)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.65-71
    • /
    • 1998
  • The aims are to evaluate the effects of an 1.0 cm acrylic plate and SSD on the dose profile and depth dose distribution of 9 MeV electron beam and to analyse adequacy for using an acrylic plate to reduce energy of electron beams. An acrylic plate of 1.0 cm thickness was used to reduce energy of 9 MeV electron beam to 7 MeV. The plate was put on an electron applicator at 65.4 cm distance from x-ray target. The size of the applicator was 10${\times}$l0cm at 100 cm SSD. For 100cm, l05cm and 110cm SSD, depth dose on beam axis and dose profiles at d$\_$max/ on two principal axes were measured using a 3D water phantom. From depth dose distributions, d$\_$max/, d$\_$85/, d$\_$50/ and R$\_$p/, surface dose, and mean energy and peak energy at surface were compared. From dose profiles flatness, penumbra width and actual field size were compared. For comparison, 9 MeV electron beams were measured. Surface dose of 7 MeV electron beams was changed from 85.5% to 82.2% increasing SSD from 100 cm to 110 cm, and except for dose buildup region, depth dose distributions were independent of SSD. Flatness of 7 MeV ranged from 4.7% to 10.4% increasing SSD, comparing 1.4% to 3.5% for 9 MeV. Penumbra width of 7 MeV ranged from 1.52 cm to 3.03 cm, comparing 1.14 cm to 1.63 cm for 9 MeV. Actual field size increased from 10.75 cm to 12.85 cm with SSD, comparing 10.32 cm to 11.46 cm for 9 MeV. Virtual SSD's of 7 and 9 MeV were respectively 49.8 cm and 88.5cm. In using energy reducer in electron therapy, depth dose distribution were independent of SSD except for buildup region as well as open field. In case of using energy reducer, increasing SSD made flatness to deteriorate more severely, penumbra width more wide, field size to increase more rapidly and virtual SSD more short comparing with original electron beam. In conclusion, it is desirable to use no energy reducer for electron beam, especially for long SSD.

  • PDF

Optimization of the Profiles in MeV Implanted Silicon Through the Modification of Electronic Stopping Power

  • Jung, Won-Chae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • The elements B, P and As can each be implanted in silicon; for the fabrication of integrated semiconductor devices and the wells in CMOS (complementary metal oxide semiconductor). The implanted range due to different implanted species calculated using TRIM (Transport of Ions in Matter) simulation results was considered. The profiles of implanted samples could be measured using SIMS (secondary ion mass spectrometry). In the comparison between the measured and simulated data, some deviations were shown in the profiles of MeV implanted silicon. The Moliere, C-Kr, and ZBL potentials were used for the range calculations, and the results showed almost no change in the MeV energy region. However, the calculations showed remarkably improved results through the modification of the electronic stopping power. The results also matched very well with SIMS data. The calculated tolerances of $R_p$ and ${\Delta}R_p$ between the modified $S_e$ of TRIM and SIMS data were remarkably better than the tolerances between the TRIM and SIMS data.

Thermal dissociation of excitons bound to neutral acceptors in CdTe single crystal (CdTe 단결정에서 중성 받게에 구속된 엑시톤의 열 해리)

  • 박효열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.185-188
    • /
    • 2000
  • The dissociation of excitons bounds to neutral accepter in CdTe single crystal was investigated by measurement of temperature dependence of the photoluminescence spectra. The binding energies of CdTe single crystal were determined by PL spectrum at 12K. The free exciton (X) binding energy, the exciton binding energy on neutral donor ($D^{\circ}$, X), and the exciton binding energy on neutral acceptor ($A^{\circ}$, X) were 10 meV, 3.49 meV, and 7.17 meV respectively. From the value of activation energy of ($A^{\circ}$, X), we could show that the dissociation of ($A^{\circ}$, X) is attributed to free exciton.

  • PDF

An Improved Proton Recoil Telescope Detector for Fast Neutron Spectroscopy

  • Chung, Moon-Kyu;Kang, Hee-Dong;Park, Tong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1973
  • For fast neutron spectroscopy in MeV region, a recoil proton telescope detector was designed and constructed so as to increase in detection efficiency without appreciable deterioration in energy resolution by adopting a special type of recoil proton radiator which is a combination of a ring-shaped vertical radiator and a cone-shaped horizontal radiator at a certain geometry. A neutron stopper was built in the detector system to minimize the background due to direct exposure of the Si(Li) detectors to primary incident neutrons. The detection efficiency and the energy resolution calculated at various neutron energies and geometries are given and these characteristics of the detector system were tested by 14.1 MeV neutrons. As the calculation predicted, the relative detection efficiency in case of the combined radiator system is almost 2.2 times of that for a single, ring-shaped vertical radiator system. The calculated energy resolution is 3.7% FWHM, whereas the measured resolution was 3.9% which means resolution broadening of approximately. 30% was resulted by introducing a combined radiator system into the telescope. Increase in background less than 40% was also observed.

  • PDF

Analysis of Gamma-ray Spectrum and Assessment of Corresponding Exposure Rate by Means of Response Matrix Method (Response Matrix에 의한 감마선(線) Spectrum 및 그 조사선량(照射線量) 해석(解析))

  • Kim, Seong-Kwan;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.3-14
    • /
    • 1986
  • A stud has been carried out for figuring out real photon spectrum from an observed gamma-ray spectrum by means of response matrix method, which is known one of the relatively convenient method for the estimation of exposure rate of a complex gamma ray field in comparison with graphical analysis and least square fitting of the measured spectrum. A 3'${\times}$3' cylindrical Nal(T1) scintillation detector in association with multichannel pulse height analyzer and six reference gamma ray sources covering the photon energy range of 0.05 to 2.0 MeV were used. In dividing the energy region for the construction of response matrix, two different approaches were attempted. One is dividing the entire energy region of interest into 20 bins, one of which corresponds to a width of 0.1 MeV to form $20{\times}20$ matrix, and another is dividing the 2 MeV region into 14 bins to form $14{\times}14$ matrix consists of $0.1(MeV)^{1/2}$ intervals assuming the resolution of the detector is dependent on square root of the incident photon energy. Inversion of thus constructed matrices was performed by a computor(P-E8/32) using the program attached to the end of this paper. The resultant exposure rates obtained by this method were in good agreement, within 10% with those calculated by ordinary formula widely used for a gamma-ray field of known energy and flux. It is concluded that the photen flux obtained by the response matrix constructed under the assumption of $E^{1/2}$ dependence is more realistic than that obtained by the matrix consist of identical energy bins in dosimetrical point of view.

  • PDF

Properties of deep levels in In_{1-x}Ga_xP$ (In_{1-x}Ga_xP$의 깊은 준위 특성)

  • 김선태;문동찬
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.312-316
    • /
    • 1994
  • In this study, ln$_{1-x}$ Ga$_{x}$P alloy crystal which has different compositions were grown by the temperature gradient solution(TGS) method, and the properties of deep levels were measured in the temperature range of 9OK-450K. We find the four deep levels of E$_{1}$, E$_{2}$(248meV), E$_{3}$(386meV) and E$_{4}$(618meV) in GaP, which has composition of Ga in In$_{1-x}$ Ga$_{x}$P is one, and the trap densities of E$_{3}$ and E4 levels were 7.5*10$^{14}$ cm$^{-3}$ and 9*10$^{14}$ cm$^{-3}$ , respectively. A broad deep level spectra was revealed in In$_{1-x}$ Ga$_{x}$P whose composition of Ga, x, were 0.56 and 0.83, and the activation energy and trap densities were about 430meV and 6*10$^{14}$ cm$^{-3}$ , respectively.ectively.

  • PDF