• Title/Summary/Keyword: 13wt%/Cr stainless steel

Search Result 5, Processing Time 0.019 seconds

Effects of Alloying Elements on Hardening of 13Cr Stainless Steels Using Plasma Nitriding Process (플라즈마질화처리에 의한 13Cr 스테인리스강의 표면경화특성에 미치는 질화물형성원소첨가의 영향)

  • ;;;;中田一博
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.88-97
    • /
    • 1998
  • The surface characteristics of 13Cr stainless steel systems by plasma nitriding were investigated. The plasma nitriding for the 13Cr steels, in which the nitriding forming elements such as Ti, V, W, Nb, Al, Zr and Si were added about 2~3wt.%, respectively, was performed. In all nitrided specimens, .epsilon.-F $e_{2-3}$N, UPSILON.'-F $e_{4}$N and CrN were detected as the nitrides with the a-Fe in the nitrided layer. VN and .betha.- $W_{2}$N were also detected in 13Cr-3V and 13Cr-3W alloys. The growth of the nitrided layer was controlled by the diffusion process. The thickness of the nitrided layer was similar in the 13Cr-2Nb and 3Zr specimens to that of 13Cr(BM) specimen, while the others exhibited the thinner layer. The activation energy for the growth of the nitrided layer in the temperature range of 773-873K was about 130kJ/mol in 13Cr(BM), 13Cr-2Ti, 3W, 3Al, 3Zr and 3Si alloys. The hardness of the nitrided specimens was significantly increased above Hv1000, comparing to the non-nitrided specimen. The specimens with the nitrided forming elements revealed much higher hardness values and, especially, 13Cr-3Al, 3V and 3Si specimens were significantly hardened up to Hv1300.v1300.0.

  • PDF

Corrosion Behaviors of Structural Materialsin High Temperature S-CO2 Environments

  • Lee, Ho Jung;Kim, Hyunmyung;Jang, Changheui
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and $650^{\circ}C$ in SFR S-$CO_2$ environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and $650^{\circ}C$. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at $650^{\circ}C$, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at $550^{\circ}C$, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-$CO_2$ environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel (질소 보호 가스 첨가가 하이퍼 듀플렉스 스테인리스 밀봉용접재의 마모부식 저항성에 미치는 영향)

  • Kim, Hye-Jin;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • Duplex stainless steels with nearly equal fraction of the ferrite(${\alpha}$) phase and austenite(${\gamma}$) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE=wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of ${\alpha}$-phase and ${\gamma}$-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of $Cr_2N$ are the key points of this study. The primary results of this study are as follows. The addition of $N_2$ to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the ${\alpha}$-phase to ${\gamma}$-phase, increasing the fraction of ${\gamma}$-phase as well as decreasing the precipitation of $Cr_2N$. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing $N_2$ decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of ${\gamma}$-phase and the stability of passive film according to the addition $N_2$ gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

Effect of Carbon Content on the Nitrogen Permeation Heat Treatment in Aluminum Bearing 13%Cr Stainless Steels (Al 함유 13%Cr 스테인리스강의 표면 질소침투 열처리에 미치는 첨가원소 탄소의 영향 (13%Cr 스테인리스강의 고질소 표면침투 열처리))

  • Yoo, D.K.;Park, J.U.;Joo, D.W.;Kim, K.D.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.151-157
    • /
    • 2000
  • This study aims to investigate the effect of carbon content on the surface nitrogen permeation of 13%Cr-1.8%Al alloyed stainless steels. The surface nitrogen permeation was performed at $1050^{\circ}C{\sim}1200^{\circ}C$ in the $1kg/cm^2$ nitrogen gas atmosphere. The nitrogen permeated surface layer of the specimen containing 0.03%C consists of AlN, martensite and retained austenite phases. while the surface layer of the specimen containing 0.14%C appears the $AlFe_3C_x$ phase including former three phases. The specimen containing 0.14%C shows lower total case depth than that containing 0.03%C at the nitrogen permeation temperatures of $1050^{\circ}C$ and $1100^{\circ}C$, while the total case depth of the specimen containing 0.14%C is remarkably increased at the temperature of $1150^{\circ}C$ and $1200^{\circ}C$ due to the increase in the retained austenite content. Martensitic phase, AlN and $AlFe_3C_x$ precipitate of the nitrogen permeated surface layer cause to increase the surface hardness of 550~600Hv.

  • PDF

Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold (진공사출금형용 STS316L 금속 다공체 제조 및 기계적 특성)

  • Kim, Se Hoon;Kim, Sang Min;Noh, Sang Ho;Kim, Jin Pyeong;Shin, Jae Hyuck;Sung, Si-Young;Jin, Jin Kwang;Kim, Taean
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2015
  • In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr- 13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under $45{\mu}m$ and over $180{\mu}m$, and then they were compacted with various pressures and sintered at $1210^{\circ}C$ for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to $79l/min{\cdot}cm^2$. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.