• Title/Summary/Keyword: 12Cr steel

Search Result 175, Processing Time 0.029 seconds

A Study of Low Cycle Fatigue Properties in CR60,SM50Q Steel and the Weldments (CR60강, SM58Q강과 그 용접부의 저사이클 피로특성)

  • 김창주;염태동;유인석;위창욱
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.73-79
    • /
    • 1994
  • Low cycle fatigue test was performed by companion specimens method to compare the properties of cyclic strain for the weldments of controlled rolling steel CR60 and welding structural steel SM58Q. And the result does not showed any difference of low cycle fatigue life between weldments. Especially, the values of coefficient of cyclic plastic strain $C_{p}$ and exponent of cyclic plastic strain $K_{p}$ of heat affected zones of CR60 steel and SM58Q steel were same. And $C_{p}$ and $K_{p}$ of CR60 steel were equal to the values of weld it means a good combination between the base metal, the heat affected zone and the weld of CR60 steel.eel.eel.

  • PDF

Material Degradation of 2Cr and 12Cr Tube Steels for High Temperature and Long-Time Exposure (2Cr 및 12Cr 크롬강튜브의 고온 장시간 사용에 따른 열화현상)

  • Choe, Byung-Hak;Lee, Gil Jae;Kim, Sang-Ho;Hong, Key-Yong;Kim, Woo Sik;Baek, Un Bong;Nahm, Seung Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.28-34
    • /
    • 2012
  • Material degradation of Cr steels in using for boiler tubes was studied in the relation of microstructural changes like carbide behavior and mechanical properties of hardness and creep-rupture life. The carbide dissolution was occurred in 2Cr steel of T22 during high temperature operation. And the grain refinement within martensite lath of 12Cr steel of X20 was derived by the high temperature-long time exposure. But the specific phenomena of material degradation which might be represented by hardness or creep-rupture time of the used tubes were not shown in all the tubes of T22 and X20 even in the fire-side using.

Degradation Evaluation of Mechanical Properties for 12Cr Ferrite Heat Resisting Steel by Reversible Permeability (가역투자율에 의한 12Cr 페라이트 내열강의 역학적 물성의 열화평가)

  • Ryu, Kwon-Sang;Kim, Min-Gi;Nahm, Seung-Hoon;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.464-470
    • /
    • 2010
  • The integrity of the industrial equipment in use under high temperature and high pressure must be assessed by regularly measuring the degraded mechanical properties during service time. In order to nondestructively monitor the degraded mechanical properties of industrial equipment, a measuring method of the reversible permeability(RP) using surface type probe is presented. The method for measuring the RP is based on that RP is the differential value of hysteresis loop. The RP is exactly the foundation hatmonics induced in a detecting coil measured by lock-in amplifier tuned to a frequency of the alternating perturbing magnetic field. The peak of RP is measured around the coercive force. Steel material used in this work was 12Cr ferritic heat resisting steel. The eleven kinds of samples aged during different times under same temperature ($700^{\circ}C$) were prepared. Peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength measured for the aged samples decreased abruptly for short aging time (below 500 h), but the change became small at a long aging time. Vickers hardness and tensile strength linearly decreased as RIRP decreased, so the degraded mechanical properties of 12Cr ferritic heat resisting steel could be nondestructively evaluated by measuring RIRP.

The Prediction of Fatigue Damage for Pressure Vessel Materials using SH Ultrasonic Wave (압력용기 고온 고압부의 피로손상 예측을 위한 SH 초음파 평가 기법 개발)

  • Kang, Yong-Ho;Chung, Yong-Keun;Park, Jong-Jin;Park, Ik-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.678-683
    • /
    • 2003
  • Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multiregression analysis and phase measurement in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.

  • PDF

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

Study on the Surface Coating of CrN for Erosion in Liquid water Drop Test

  • Kwon, Sik-Chol;Baek, W-S;Lee, S-H;Kim, K-H;Kim, H-H
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.63-63
    • /
    • 2001
  • As a new approach to substitute for a hard alloy of stellite 6B containing Co which is radioactive in nuclear system, a hard-phase coating of CrN will be applicable to protect 12Cr steel from erosion at leading edge on steam turbine blade. The CrN coating was prepared by arc ion plating on 12 Cr steel and was undertaken in liquid impact test at the velocity of 35Om/sec, which simulate the environment in the last stage of blade. The erosion resistance of coating was evaluated by optical observation on damaged surface. The threshold number of impact was closely related with surface hardness. And thus, it was confirmed that surface hardening improves the life time of steam turbine blade.

  • PDF

Behavior of the Residual Stress on the Surfaces of 12Cr Steels Generated by Flame Hardening Process (화염경화 표면처리 공정에 의한 12Cr 강의 잔류응력 거동)

  • 이민구;김광호;김경호;김흥회
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.4
    • /
    • pp.226-233
    • /
    • 2004
  • The residual stresses on the surfaces of low carbon 12Cr steels used as a nuclear steam turbine blade material have been studied by controlling the flame hardening surface treatments. The temperature cycles on the surfaces of 12Cr steel were controlled precisely as a function of both the surface temperature and cooling rate. The final residual stress state generated by flame hardening was dominated by two opposite competitive contributions; one is tensile stress due to phase transformation and the other is compressive stress due to thermal contraction on cooling. The optimum processing temperatures required for the desirable residual stress and hardness were in the range of $850^{\circ}C$ to $960^{\circ}C$ on the basis of the specification of GE power engineering. It was also observed that the high residual tensile stress generated by flame hardening induced the cracks on the surfaces, especially across the prior austenite grain boundaries, and the material failure virtually, which might limit practical use of the surface engineered parts by flame hardening.