• Title/Summary/Keyword: 12Cr steel

Search Result 174, Processing Time 0.022 seconds

ELECTROSLAG STRIP OVERLAY OF PIPE, FITTINGS, AND PRESSURE VESSELS

  • Dan, Capitanescu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • ElectroSlag Strip Overlaying (ESSO) process has been around since 1970. ESSO process had limited acceptance due to a few problems associated with the use of this process in its very early stage. Limited knowledge and, most significantly, poor quality of the equipment and welding flux gave the ESSO process a bad name. However, this process is well accepted today and used in North America, Europe and Japan. The ESSO process provides low dilution overlays at high deposition rates, excellent and consistent deposit chemistry with excellent surface quality, and virtually no defects. Capitan has taken this process one step further through extensive research and development of the process itself as well as the equipment. The improvement brought to the process warranted the issuance in May 2000 of an US patent. This study demonstrates the feasibility of this process with immediate positive production results. The main achievements of this work are as follows: $\textbullet$ Development of six various strip-flux combinations on three different base materials: carbon steel, $\frac{1}{4}$ Cr/.5 Mo and 2 $\frac{1}{4}$ Cr/l Mo, fully tested with: penetrant, ultrasound, bends, hardness, overlay chemistry, corrosion and hydrogen disbonding. $\textbullet$ 12" dia. 90 hot formed elbows from straight pipe electroslag overlayed with "1 layer" and "2 layer" Alloy 625 $\textbullet$ a very unique development of miniaturized overlaying equipment able to perform overlay in pipe with diameters as low as 10" (254 mm). This development has large applications in the field of offshore, petrochemical, refining, pulp and paper and power generation industries. The aftermath of this development was its immediate acceptance by major end users with the completion of four projects of overlayed pipe in the USA and Far East Asia.

  • PDF

Phase analysis of simulated nuclear fuel debris synthesized using UO2, Zr, and stainless steel and leaching behavior of the fission products and matrix elements

  • Ryutaro Tonna;Takayuki Sasaki;Yuji Kodama;Taishi Kobayashi;Daisuke Akiyama;Akira Kirishima;Nobuaki Sato;Yuta Kumagai;Ryoji Kusaka;Masayuki Watanabe
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1300-1309
    • /
    • 2023
  • Simulated debris was synthesized using UO2, Zr, and stainless steel and a heat treatment method under inert or oxidizing conditions. The primary U solid phase of the debris synthesized at 1473 K under inert conditions was UO2, whereas a (U, Zr)O2 solid solution formed at 1873 K. Under oxidizing conditions, a mixture of U3O8 and (Fe, Cr)UO4 phases formed at 1473 K, whereas a (U, Zr)O2+x solid solution formed at 1873 K. The leaching behavior of the fission products from the simulated debris was evaluated using two methods: the irradiation method, for which fission products were produced via neutron irradiation, and the doping method, for which trace amounts of non-radioactive elements were doped into the debris. The dissolution behavior of U depended on the properties of the debris and aqueous solution for immersion. Cs, Sr, and Ba leached out regardless of the primary solid phases. The leaching of high-valence Eu and Ru ions was suppressed, possibly owing to their solid-solution reaction with or incorporation into the uranium compounds of the simulated debris.

Effects of Tool Materials on Corrosion Properties of Friction Stir Welded 409 Stainless steel (툴 재료가 마찰교반접합된 409 스테인리스강의 부식 특성에 미치는 영향)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Song, Keun;Yeon, Yun-Mo;Lee, Won-Bae;Lee, Jong-Bong;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.42-42
    • /
    • 2009
  • 마찰교반접합 (Friction Stir Welding)은 1991년 영국 TWI에서 개발된 접합 법으로서 회전하는 툴이 재료내부에 삽입되면 툴과 재료사이에서 발생하는 마찰열에 의하여 온도가 상승하게 되어 재료는 연화되고, 이러한 재료 내부에서 회전하는 툴이 이동하게 되면 재료 내부는 기계적 교반에 의해 소성변형이 일어남과 동시에 접합이 이루어진다. 마찰교반접합은 동적 재결정에 의한 접합부의 미세한 결정립 형성으로 인하여 기계적 특성이 향상되며 보호 가스가 필요 없어 친환경적임과 동시에 용융 용접 법에 비해 접합 시 에너지 소모가 적으며 또한 접합 후 접합부에서의 변형이 상대적으로 적다는 장점이 있다. 이러한 장점을 가진 마찰교반접합은 알루미늄 합금, 마그네슘 합금 그리고 동 합금과 같은 저 융점 비철재료에 많은 연구와 적용 사례들이 있어왔다. 하지만 최근에는 일반 탄소강, 연강, 오스테나이트계 스테인리스강, 니켈 합금, 티타늄 합금과 같은 고융점 재료에도 연구 및 적용이 진행되고 있는 추세이다. 페라이트계 스테인리스강은 가격이 비싼 Ni을 함유하지 않아 오스테나이트계 스테인리스강에 비하여 강재의 가격은 낮으면서도 고온특성 및 내식성이 우수하여 건축용, 자동차 배기계용으로 널리 사용되고 있다. 하지만 이런 장점을 가진 페라이트계 스테인리스강을 기존의 용융 용접 법으로 접합 시 용접부 및 열영향부에서의 결정립의 조대화로 인한 인성 및 연성이 저하되며, 특히 예민화된 열영향부 입계 내에 Cr 탄화물이 석출되어 입계주변에 Cr 결핍 층을 형성되어 입계부식이 발생되는 문제점이 발생된다. 본 연구에서는 마찰교반접합을 이용하여 두께 3mm의 409 스테인리스강에 대해 맞대기 접합을 실시하였다. 접합 변수를 툴의 재료 (WC-12wt%Co, $Si_3N_4$)로 하여 접합을 실시하였고 접합 후 외관상태 점검, 광학 현미경과 주사 전자 현미경을 통하여 미세조직을 관찰하였으며 황산-황산동 부식 시험을 실시하여 접합부의 부식 특성을 평가하였다.

  • PDF

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Seong-Ung;Hong, Sun-Hyeok;Jeon, Hyeong-Yong;Jo, Seok-Su;Ju, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.

Evaluation of Corrosion Degradation Characteristics of Turbine Blade Material Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 터빈 블레이드 재료의 부식 열화특성 평가)

  • Song, Sung-Jin;Kim, Young-H.;Bae, Dong-Ho;Jung, Min-Ho;Kwon, Sung-Duk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2322-2327
    • /
    • 2002
  • The corrosion degradation characteristics of the 12Cr alloy steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the backward radiated Rayleigh surface wave. In order to evaluate corrosion degradation characteristics, we constructed automated system for the backward radiation, and the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the specimens. The velocity of the surface wave decrease as the increase of the aging time in the backward radiation profile, which seems to result from the increase of the effective degrading layer thickness. And, amplitude of the surface wave increase as the aging time, which seems to result from the increase of the intergranular corrosion. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion degradation characteristics of the aged materials.

A Study on Failure Analysis of Low Pressure Trubine Blade Using AFM and FEM (AFM과 FEH을 이용한 저압 터빈 블레이드의 파손해석에 관한 연구)

  • Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1705-1712
    • /
    • 2001
  • Mechanical component has striation with constant width and SEM can estimate fracture type and loading condition. SEM has benefit to fatigue fracture analysis but striation can be observed according to the kind of material and range of crack growth rate and can't. In this case, it needs AFM that can measure 3-dimensional surface profile with resolution of atomic size. In this study. to find fracture reason of torsion-mounted blade in nuclear plant, we estimate the relation between stress intensity factor range and root mean square roughness in 12% Cr steel by AFM and predict in-service loading condition of turbine blade. failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

A Study on Failure Analysis of Low Pressure Turbine Blade in Nuclear Plant using AFM (AFM을 이용한 발전소용 저압 터빈 블레이드의 파손해석에 관한 연구)

  • Hong, Soon-Hyeok;Choi, Woo-Sung;Moon, Sung-Jun;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.61-68
    • /
    • 2001
  • Turbine blade in nuclear plant is subject to cyclic bending fatigue by high steam pressure. Especially, fatigue fracture is caused by low stress below yielding stress. Photograph by SEM doesn't have striation but photograph by AFM has striation on the fatigue fractured surface of 12% Cr steel used in turbine blade. Surface roughness $R_q$ has the linear relation with respect to stress intensity factor range ΔK and is increased linearly according to load amplitude $\textit{\Delta}P$. In this study loading condition applied to turbine blade is predicted by the relation between the gradient of $R_q$ to $\textit{\Delta}K$ and load amplitude $\textit{\Delta}P$.

  • PDF

Study for Fracture in the Last Stage Blade of a Low Pressure Turbine (화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구)

  • Lee, Gil Jae;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.423-428
    • /
    • 2016
  • The last stage blades of a low pressure (LP) turbine get frequently fractured because of stress corrosion cracking. This is because they operate in a severe corrosive environment that is caused by the impurities dissolved in condensed steam and high stress due to high speed rotation. To improve the reliability of the blades under severe conditions, 12% Cr martensitic stainless steel, having excellent corrosion resistance and higher strength, is widely used as the blade material. This paper shows the result of root cause analysis on a blade which got fractured suddenly during normal operation. Testing of mechanical properties and microstructure examination were performed on the fractured blade and on a blade in sound condition. The results of testing of mechanical properties of the fractured blade showed that the hardness were higher but impact energy were lower, and were not meeting the criteria as per the material certificate specification. This result showed that the fractured blade became embrittled. The branch-type crack was found to have propagated through the grain boundary and components of chloride and sulfur were detected on the fractured surface. Based on these results, the root cause of fracture was confirmed to be stress corrosion cracking.

Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO2 Cycle Heat Exchangers (고온 S-CO2 사이클 열교환기용 스테인리스강 및 Fe-Cr-Ni 합금 확산 접합부의 고온 인장 특성평가)

  • Hong, Sunghoon;Sah, Injin;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1421-1426
    • /
    • 2014
  • To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical $CO_2$ ($S-CO_2$) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the $S-CO_2$ system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to $650^{\circ}C$. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to $550^{\circ}C$. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.

A Study on Correlation of Microstructural Degradation and Mechanical Properties of 9-12%Cr-Steel for Ultra-Super Critical Power Generation (초초임계압 발전용 소재의 장시간 열처리에 따른 미세조직 변화와 기계적 특성의 상관관계 연구)

  • Joo Sungwook;Yoo Junghoon;Shin Keesam;Hur Sung Kang;Lee Je-Hyun;Suk Jin Ik;Kim Jeong Tae;Kim Byung Hoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • For the good combination of high-temperature strength, toughness and creep property, $9-12\%$ chromium steels are often used for gas turbine compressors, steam turbine rotors, blade and casing. In this study, the correlation of microstructural evolution and mechanical properties was investigated fur the specimens heat-treated at 600, 650 and $700^{\circ}C$ for 1000, 3000 and 5000 hrs. The microstructure of as-received specimen was tempered martensite with a high dislocation density, small sub-grains and fine secondary phase such as $M_23C_6$. Aging for long-time at high temperature caused the growth of martensite lath and the decrease of dislocation density resulting in the decrease in strength. However, the evolution of secondary phases had influence on hardness, yield strength and impact property. In the group A specimen aged at $600^{\circ}C\;and\;650^{\circ}C$, Laves phase was observed. The Laves phase caused the increase of the hardness and the decrease of the impact property. In addition, the abrupt growth of secondary phases caused decrease of the impact property in both A and B group specimens.