• Title/Summary/Keyword: 12%Cr Steel

Search Result 175, Processing Time 0.026 seconds

Effect of Al Addition on the Surface Nitrogen Permeation Treatment of 13%Cr Stainless Steels (13%Cr 스테인리스강의 표면 질소침투처리에 미치는 Al첨가의 영향)

  • Yoon, S.S.;Kim, K.D.;Lee, H.W.;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.221-230
    • /
    • 1999
  • The surface nitrogen permeation of Al alloyed 0.14%C-13%Cr stainless steels was investigated after heat treating at $1050^{\circ}C{\sim}1150^{\circ}C$ in the nitrogen gas atmosphere. The strong affinity between Al and nitrogen permeates the nitrogen through the interior of the steels. Two precipitates of round type and needle type are observed at the surface layer. These precipitates mainly consist of AlN containing plenty of aluminum. The surface layer of 0.53%Al alloyed specimen shows ferrite phase, while the surface layers of 1.65%Al and 2.27%Al alloyed specimens appear ${\gamma}$ plus ${\alpha}$ phases. The depth of nitrogen permeation depends upon the Al content and microstructure of the matrix. The 1.65%Al alloyed specimen representing ${\alpha}+{\gamma}$ matrix phases at the nitrogen permeation temperature shows the maximum case depth in this experiment. Although the surface hardness increases by raising the Al content of the specimen owing to the increase of nitride precipitation density, the nitride precipitation deteriorates the corrosion resistance in the solution of HCl, $H_2SO_4$, and $FeCl_3$.

  • PDF

A Study on the Effect of Initial Strain on Cyclic Creep Properties of Steam Turbine Rotor Steel (화력 발전용 로터강의 초기 변형율이 CYCLIC 크리프 특성에 미치는 영향에 관한 연구)

  • 오세규;정순억;한상덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.78-86
    • /
    • 1992
  • The creep behaviors of 1%Cr-Mo-V and 12%Cr steam turbine rotor steels under static or cyclic load were examined at 600 and $700^{\circ}C$. The relationship between these two kinds of phenomena was studied and the experimental results were summarized as follows: 1) It is confirmed that the cyclic creep strain dependent on time is more available for creep, behavior analysis according to frequency change than that dependent on number of cycles, and the static creep, the special case of cyclic creep with stress ratio of 1 can be also more effectively analyzed by time-dependence. 2) The steady cyclic creep rate vs. the steady static creep rate, increases according to the increase of stress ratio, and this phenomena may occur on occasion of the decrease of the internal stress. 3) The initial strain affects on all the creep properties of the transient region, the steady state region and the rupture time in cyclic creep as well as static creep, and the quantitative relationships among them exist.

  • PDF

Statistical Evaluation of Factors Affecting IASCC of Austenitic Stainless Steels for PWR Core Internals (오스테나이트계 스테인리스강 노내 구조물의 조사유기응력부식균열 영향 인자에 대한 통계적 분석)

  • Kim, Sung-Woo;Hwang, Seong-Sik;Kim, Hong-Pyo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.819-827
    • /
    • 2009
  • This work is concerned with a statistical analysis of factors affecting the irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internals of pressurized water reactors (PWR). The microstructural and environmental factors were reviewed and critically evaluated by the statistical analysis. The Cr depletion at grain boundary was determined to have no significant correlation with the IASCC susceptibility. The threshold irradiation fluence of IASCC in a PWR was statistically calculated to decrease from 5.799 to 1.914 DPA with increase of temperature from 320 to $340^{\circ}C$. From the analysis of the relationship between applied stress and time-to-failure of stainless steel components based on an accelerated life testing model, it was found that B2 life of a baffle former bolt exposed to neutron fluence of 20 and 75 DPA was at least 2.5 and 0.4 year, respectively, within 95% confidence interval.

Effects of Tempering on Tensile Properties of Medium-Carbon Low-Alloy Steels (중탄소 저합금강의 인장성질에 미치는 템퍼링의 영향)

  • Lee, Young-Kook;Krauss, George
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.327-337
    • /
    • 1999
  • A series of Ni-Cr-Mo alloy steels were austenitized, quenched to martensite, and tempered at various temperature and time conditions. Tensile testing was conducted at room temperature with cylindrical specimens, and hardness was measured using Rockwell hardness tester. In the tempering stage I, high strain hardening and yield strength accounted for the high ultimate strength and hardness. In the tempering stage II, strengths and hardness linearly decreased with increasing tempering temperature. Specimens tempered in the temperin stage III showed incipient discontinuous yielding and tensile strengths only slightly higher than yield strengths. Ductilities decreased slightly in specimens tempered in the tempered martensite embrittlement range, and severely decreased in specimens tempered for 10 hours at $500^{\circ}C$ in the temper embrittlement range. Specimens tempered at $600^{\circ}C$ for 10 hours showed recrystallized microstructures, a number of fine dimples, and increased strain hardening, probably due to the precipitation of alloy carbides. The simple formulae for the mechanical properties of these steels were suggested as a function of carbon content and Hollomon-Jaffe tempering parameter.

  • PDF

Static and Metadynamic Recrystallization of Non-Heat Treated Medium Carbon Steels (비조질 중탄소강의 정적 및 준동적 재결정에 관한 연구)

  • Han C. H.;Kim S. I.;Yoo Y. C.;Lee D. L.;Choo W. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.29-32
    • /
    • 2000
  • The static and metadynamic recrystallization of non-heat treated medium carbon steel(Fe - 0.45wt.$\%C\;-\;0.6wt.\%Si\;-\;1.2wt.\%Mn\;-\;-0.12wt.\%Cr \;-\;0.1wt.\%V \;-\;0.017wt\%$.Ti) were studied by the torsion test in the strain rate range of 0.05 - 5 $sec^{-1}$, and in the temperature range of $900\;-\;1100\;^{\circ}C$. Interrupted deformation was performed with 2 pass deformation in the pass strain range of $0.25 {\varepsilon}_p(peak strain)\;and\;{\varepsilon}_p$, and in the interpass time range or 0.5 - 100 sec. The dependence or pass strain(${\varepsilon}_i$), strain rate( $\dot{\varepsilon}$ ), temperature(T), and interpass time($t_i$) on static recrystallization (SRX) and metadynamic recrystallization (MDRX) were predicted from the modified Avrami's equations respectively. Comparison of the softening kinetics between SRX and MDRX was indicated that the rate of MDRX was more rapid than that of SRX under the same deformation variables.

  • PDF

The Effects of Welding Wires on the Weldabilities of API X-100 with Laser-Arc Hybrid Welidng (API X-100의 레이저-아크 하이브리드 용접성에 미치는 용접와이어의 영향)

  • Kim, Sungwook;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, API-X100 steel pipes were welded with various kinds of welding wires in the laser-arc hybrid welding process. 10kW fiber laser source was combined to MIG arc welding process. API X-100 steel of base metal was of 16.9mm thickness, and butt welding applied. After welding, full penetration weld was acquired by 1-pass welding. A root porosity and the lack of fusion was observed in some welding conditions. By the mixing the melted wire, acicular ferrite, polygonal ferrite, pro-eutectoid, aligned side plate, and bainite structures were observed at the weld metal. From the observation of hybrid weld, unmixed zone had more Ni and Cr. The unmixed zone was a 1/3 area of the weld metal. As the mechanical test of the hybrid welding, tensile test and impact test applied. From the tensile test, all of the welding except SM70S was fractured at the base metal. The result of the impact test at -30 degree C led 60J~320J of the absorbed energy. The result of the low-absorbed energy might be from the coarse equiaxed structures of the weld metal.

Effect of Seawater Concentration on Electrochemical Corrosion of Duplex Stainless Steel

  • Ho-Seong Heo;Hyun-Kyu Hwang;Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.255-265
    • /
    • 2024
  • Duplex stainless steels (UNS S32205, UNS S32750) are used in various environments. The potentiodynamic polarization tests were conducted at 30 ℃ in order to study the electrochemical corrosion behaviors of duplex stainless steels under different seawater concentrations (fresh water, seawater, mixed water). The results of Tafel analysis in seawater showed that UNS S32205 and UNS S32750 had the highest corrosion current densities at 6.12 × 10-4 mA/cm2 and 5.41 × 10-4 mA/cm2, respectively. The pitting potentials of UNS S32205 and UNS S32750 were comparable to or higher than the oxygen evolution potential in fresh water, mixed water, and seawater. The maximum damage depths and surface damage ratio caused by pitting corrosion increased with chloride concentration. The synergy effect of molybdenum and nitrogen enhances the concentration of Mo, Ni, and Cr at the interface of the metal-electrolyte. In particular, in the case of nitrogen, NH3 and NH4+ are formed to compensate for the pH drop in the pitting region, thereby strengthening the repassivation of the film. The excellent corrosion resistance of UNS S32750 is attributed to the strengthening effect of the chromium oxide film due to the presence of molybdenum and nitrogen.

Creep Behavior Analysis of 25Cr-20Ni Stainless Steels by Omega Method (오스테나이트계 25Cr-20Ni 스테인리스강의 Ω법을 이용한 고온 크리프 거동 해석)

  • Park, In-Deok;Nam, Gi-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.349-356
    • /
    • 2002
  • For two kinds of 25Cr-20Ni stainless steels, STS310J1TB and STS310S with and without a small amount of Nb and N, creep behavior has been studied in a stress and temperature range from 147 to 392 MPa and from 923 to 773 K with a special reference to tertiary creep. The average creep life of STS310J1TB was about 100 times longer than that of the STS310S. The apparent activation energy for the initial creep rate was 330 kJ/mol in STS310J1TB, while that of the STS310S was 274kJ/mol in a power law creep region and 478 kJ/mol in a region of power law breakdown (PLB). The activation energy for STS310S below PLB is close to the for self-diffusion. When compensating for the temperature dependence of the Young's modulus and the omega value, it was found that the apparent activation energy for STS310J1TB was reduced to the activation energy for diffusion of chromium atom in gamma steel. The stress exponent of STS310S was about 12.3 above PLB and 5.1 in a power law creep region. Notwithstanding that the creep condition for STS310J1TB was in a power law creep region, its stress exponent was 7.9 larger than that of STS310S corresponding to the same creep conditions. This was ascribed to the presence of fine precipitates in STS310J1TB.

Creep Behavior Analysis of 25Cr-20Ni Stainless Steels With Omega Methods (오스테나이트계 25Cr-20Ni 스테인리스강의 $\Omega$ 법을 이용한 고온 크리프 거동 해석)

  • Park, In-Duck;Nam, Ki- Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.117-122
    • /
    • 2001
  • For two kinds of 25Cr-20Ni stainless steels, SUS310J1TB TB and SUS310S with and without a small amount of Nb and N, creep behavior has been studied in a stress and temperature range from 147 to 392MPa and from 923 to 973K with a special reference to tertiary creep. The average creep life of SUS310J1TB was about 100 times longer than that of the SUS310S. The apparent activation energy for the initial creep rate was 330 kJ/mol in SUS310J1TB, while that of the SUS310S was 274 kJ/mol in a power law creep region and 478 kJ/mol in a region of power law breakdown (PLB). The activation energy for SUS310S below PLB is close to the that for self-diffusion. When compensating for the temperature dependence of the Young's modulus and the omega value, it was found that the apparent activation energy for SUS310J1TB was reduced to the activation energy for diffusion of chromium atom in a gamma steel. The stress exponent of SUS310S was about 12 above PLB and 5.1 in a power law creep region. Notwithstanding that the creep condition for SUS310J1TB was in a power law creep region, its stress exponent was 8.3 larger than that of SUS310S corresponding to the same creep conditions. This was ascribed to the presence of fine precipitates in SUS310J1TB.

  • PDF

유연성 스테인레스와 폴리이미드 기판에서 제조된 CIGS 박막 태양전지의 효율 개선 및 특성 연구

  • Kim, Jae-Ung;Kim, Hye-Jin;Kim, Gi-Rim;Kim, Jin-Hyeok;Jeong, Chae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.245-245
    • /
    • 2015
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 높은 효율과 낮은 제조비용, 높은 신뢰성으로 인해 박막 태양전지 중 가장 각광받고 있다. 특히 유리기판 대신 가볍고 유연한 철강소재나 플라스틱 소재를 이용하여 발전분야 외에 건물일체형, 수송용, 휴대용등 다양한 분야에 적용이 가능하다. 이러한 유연 기판을 이용한 CIGS 태양전지의 개발을 위해서는 기판의 특성에 따른 다양한 공정개발이 선행되어야 한다. 특히 CIGS 태양전지에서는 Na의 역할이 매우 중요한데 유연기판의 경우 이러한 Na이 없을 뿐만 아니라 철강기판의 경우 Fe, Ni, Cr등의 불순물이 확산되어 흡수층의 특성을 저하시켜 효율을 감소시킨다. 따라서 이러한 철강 기판의 경우 불순물의 확산을 방지하는 확산방지막이 필수적이다. 또한 플라스틱기판의 경우 내열성이 낮아 저온에서 공정을 진행해야하는 단점이 있다. 이러한 유연기판의 특성을 고려하여 본 연구에서는 유연기판으로 STS 430 stainless steel과 poly-imide를 이용하여 특성 개선을 진행하였다. 먼저 stainless steel과 Poly-imide, soda-lime glass, coning glass의 기판을 이용하여 기판에 따른 흡수층의 특성을 비교 분석하였으며 stainless steel 기판을 이용하여 확산 방지막의 유무 및 두께에 따른 흡수층 및 소자의 특성을 분석하였다. 이때 확산 방지막은 기존 TCO 공정에서 사용되는 i-ZnO를 사용하였으며 RF sputter를 이용하여 50~200nm로 두께를 달리하며 특성 비교를 실시하였다. 이때 효율은 확산방지막을 적용하지 않았을 때 약 5.9%에서 확산 방지막 적용시 약 10.6%로 증가하였다. 또한 poly-imide 기판을 이용하여 $400^{\circ}C$이하에서 흡수층을 제조하여 특성평가를 진행하였으며 소자 제조 후 효율은 약 12.2%를 달성하였다. 모든 흡수층은 Co-Evaporation 방법을 이용하여 제조하였으며 제조된 흡수층은 SEM, XRF, XRD, GD-OES, PL, Raman등을 이용하여 분석하였으며 그 외 일반적인 방법을 이용하여 Mo, CdS, TCO, Al grid를 제조하였다. AR 코팅은 제외 하였으며 제조된 소자는 솔라 시뮬레이터를 이용하여 효율 특성 분석을 실시하였으며 Q.E. 분석을 실시하였다.

  • PDF