• Title/Summary/Keyword: 10ton Thrust

Search Result 22, Processing Time 0.018 seconds

Development of 10ton Thrust Liquid Rocket Engine using LOX+LNG with Turbopump System called CHASE-10 (액체산소와 액체메탄을 사용하며, 고압터보펌프가 장착된 추력 10톤급 액체로켓엔진 CHASE-10의 개발)

  • Kim Kyoung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.181-184
    • /
    • 2006
  • We successfully completed the development test for a 10-ton thrust liquid rocket engine using LOX+LNG (Liquefied Natural Gas, or Methane) with a high performance turbopump system. Resulting from the success of the regenerative-cooling capability using LNG, high pressure-generating capability and gas-generating performance, etc, methane engine with the product name CHASE-10 will be commercialized in the near future.

  • PDF

Development of Performance Analysis Program for Gas Generator Cycle Rocket Engine (가스발생기 사이클 로켓엔진 성능해석 프로그램 개발)

  • Cho, Won-Kook;Park, Soon-Young;Seo, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.18-25
    • /
    • 2008
  • A performance analysis program has been developed for the gas generator cycle liquid rocket engine. This program predicts the system performance with the performances of subsystems which are evaluated by the models based on another analyses or experiments. The analysis method has been validated by comparing the engine performance against the published conceptual design. The performance models of the subsystems have been verified to give reasonable results by comparing with the MC-1 engine design and the system analysis of 10 ton thrust engine. The system performance of the 30 ton thrust rocket engine using LOx/Jet-A1 has been presented as an application example.

Development of 2-ton thrust-level sub-scale calorimeter (추력 2톤급 축소형 칼로리미터 개발)

  • Cho, Won-Kook;Ryu, Chul-Sung;Chung, Yong-Hyun;Lee, Kwang-Jin;Kim, Seung-Han;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • A calorimeter of 2-ton thrust level rocket engine chamber has been developed to measure the wall heat flux. The liner of the chamber is made of copper-chromium alloy to maximize the heat transfer performance and structural strength. 1-D design code based on empirical correlations has been used for the prediction of the global thermal characteristics while 3-D CFD has been applied for the verification of local cooling performance. The predicted average wall heat flux at the throat is 43 $MW/m^{2}$ for the combustion chamber pressure of 53 bar. The chamber structure is confirmed to be safe at the pressure of 150 bar through 2-D stress analysis and measurement of the strain of the test species. Finally, the test of pressurizing the calorimeter chamber has been performed with water at the pressure of 150 bar in room temperature environment. No thermal damage has been detected after the hot-fire test in the test nozzle of same cooling performance with the developed calorimeter though the measured throat heat flux is higher than the design value by 10%.

Weight Reduction of the Reusable Launch Vehicles Using RBCC Engines (RBCC엔진을 적용한 재사용발사체의 중량저감효과)

  • Kang, Sang Hun;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.56-66
    • /
    • 2013
  • Weight reduction of the VTHL / TSTO type of the reusable launch vehicles using RBCC engines are investigated. To predict weight and thrust of the vehicles, equations of motion are analyzed. Analysis results are compared with specifications of existing launch vehicles for validations. For the mission of inserting 2.5 ton payload to 200 km circular orbit, the case A, which uses the RBCC engine in the 1st stage shows smaller weight than the case B, which uses the RBCC engine in the 2nd stage. The weight of the case A shows only 25.8% of a existing rocket launch vehicle's weight.

Performance Test of Inter-propellant Seal (추진제 혼합 방지 실의 성능시험)

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.322-328
    • /
    • 2010
  • An inter-propellant seal (IPS) for 75 ton class thrust turbopump was tested. Leakage characteristics were presented with a given range of pressure difference under cryogenic as well as room temperature conditions. For cryogenic tests, liquid nitrogen was used as analogic fluid of liquid oxygen (LOX) while water was used instead of kerosene for room temperature condition. Test results showed that IPS had satisfactory leakage performance. Additionally endurance test was conducted to prove the life time of manufactured IPS and the tested IPS had successfully survived during required life time, 2100 seconds.

Hot Test of a Turbopump for a Liquid Rocket Engine (액체로켓엔진용 터보펌프의 고온 성능시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.933-938
    • /
    • 2009
  • Hot test of a full-scale turbopump for a 30-ton-thrust liquid rocket engine was carried out. The turbopump is composed of an oxidizer pump, a fuel pump, and a turbine on a single shaft. Model fluid was used in the test, that is, hot air for the turbine and water for the pumps. The turbopump was operated stably at full speed for 120 seconds. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test are compared with those from the turbopump component tests which were performed at about half of the design rotational speed.

Hydraulic Performance Test of a Turbopump Inducer using Liquid Nitrogen (액체질소를 이용한 터보펌프 인듀서의 수력성능시험)

  • Kim Jin-Sun;Hong Soon-Sam;Kim Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.20-26
    • /
    • 2006
  • A cryogenic test facility has been developed to perform inducer and pump tests using liquid nitrogen. Performance tests of a turbopump in the maximum 50ton-thrust class can be performed with cryogenic fluid in the facility which operates at a temperature around -196oC with the rotational speed up to 30,000rpm To verify the reliability of the cryogenic pump test facility, hydraulic performance tests of an inducer were accomplished, and their results were compared with the result from a water test. The results confirm the reliability of the cryogenic test facility, and it is expected to contribute for on-going development of a turbopump for liquid rocket engines.

Optimal Design and Test of Fuel-Rich Gas Generator

  • Lee, Changjin;Kwon, Sun-Tak
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.560-564
    • /
    • 2004
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton$_{f}$ in thrust with RP-1/Lox propellant. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching required by turbopump system. Design variables were selected as total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. Also, the combustion test was conducted to evaluate the performance of injector and combustion chamber. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.r.

  • PDF

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

Rotordynamic design of a fuel pump and turbine for a 75 ton liquid rocket engine (75톤급 액체로켓 엔진용 연료펌프/터빈 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.201-208
    • /
    • 2007
  • A fuel pump and turbine rotordynamic design is performed for a 75 ton thrust liquid rocket engine. A distance from the rear bearing to the turbine was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds, turbine mass and bearing stiffness to investigate critical speed of the fuel pump and turbine. From the numerical analysis, it is found that the effect of the front bearing stiffness is negligible in the critical speed due to the large mass moment of inertia of the turbine. With the rear bearing stiffness over $2{\times}10^{8}N/m$ and the turbine mass below 20 kg, the critical speed of the fuel pump and turbine in long shaft case is at least 70 % higher than the operating speed 11,000 rpm.

  • PDF