• Title/Summary/Keyword: 10% NaCl solution

Search Result 868, Processing Time 0.025 seconds

Studies on the Preparation of Nanofiltration Membrane for Ultra-low Pressure Application through Hydrophilization of Porous PVDF Membrane Using Inorganic Salts (무기염을 이용한 다공성 PVDF 고분자막의 친수화를 통한 초저압용 나노여과막 제조 연구)

  • Park, Chan Jong;Cho, Eun Hye;Rhim, Ji Won;Cheong, Seong Ihl
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • To prepare the hollow fiber nanofiltration composite membranes, the poly(vinylidene fluoride) (PVDF) membrane was hydrophilized with $K_2Cr_2OH$ and $KMnO_4$ aqueous solutions. And then the composite membrane was synthesized on that membrane surfaces using interfacial polymerization with piperazine (PIP) and trimesoyl chloride (TMC). The resulting membranes were characterized in terms of the rejection and flux for NaCl, $CaSO_4$, $MgCl_2$ 100 ppm solution and 300 ppm of NaCl and $CaSO_4$ mixed solution by varying the coating time, drying time, and the concentration of the coating materials. As a result, the higher rejections were shown for $K_2Cr_2OH$ solutionas a hydrophilization material, and the flux was enhanced while the rejection reduced as the hydrophilization time is longer. Also, the rejection increased and the flux reduced as the concentrations of triethyl amine (TEA) and sodium lauryl sulfate (SLS) were higher. Typically, the rejection 50% and flux 40 LMH for NaCl 100 ppm solution, and the rejection 55% and flux 48 LMH for $CaSO_4$ 100 ppm solution were obtained for the PVDF hollow fiber composite membrane prepared with the conditions of PIP 2 wt% (Triethyl amine (TEA) 7 wt%, SLS 20 wt% mixed solution against PIP concentration) and TMC 0.1 wt%.

Removal of Alkali Metal Ion and Chlorine Ion Using the Ion Exchange Resin (이온교환수지를 이용한 알칼리 금속 이온 및 염소 이온의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.276-281
    • /
    • 2020
  • A research was conducted on the removal of ion from the solution involving the alkali metal ion and chlorine ion using ion exchange resin. The cation exchange resin and anion exchange resin was used for the remove of metal ion (Na+ and K+) and chlorine ion (Cl-), respectively. In the case of solution A (involving 36,633 ppm of Na+ and 57,921 ppm of Cl-), the Na+ ion and Cl- ion were removed over 99% within 20 min. In the case of solution B (involving 1,638 ppm of K+), the K+ ion was removed over 99% within 3 min.

Corrosive Characterisics of 12Cr Alloy Steel and Fatigue Characteristics of the Artificially Degraded 12Cr Alloy Steel (12Cr 합금강의 부식특성 및 인공열화된 12Cr합금강의 피로특성)

  • Jo, Sun-Young;Kim, Chul-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.965-971
    • /
    • 2001
  • To estimate the reliability of 12Cr alloy steel, the material of turbine blade in the steam power plant, Its corrosion susceptibility and fatigue characteristics in NaCl and Na$_2$SO$_4$solution with the difference of concentration and temperature was investigated. The polarization tests recommended in ASTM G5 standard for corrosion susceptibility in the various corrosive solutions was estimated. It showed that the higher temperature, the faster corrosion rates and corrosion rates were the fastest in 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution. From these results, the degradation conditions were determined in distilled water, 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution at room temperature, 60$\^{C}$ and 90$\^{C}$ during 3, 6 and 9 months. Its surface had a few pits for long duration. But, it was not susceptible in sulfide and chloride condition of several temperatures. If the degraded 12Cr alloy steel and non-degraded one were compared with fatigue characteristics, Any differences were not found regardless of temperature and degradation period.

Changes in Pectic Substances of Korean Pickled Cucumbers with Different Preparation Methods (담금 방법을 달리한 오이지의 숙성 중 펙틴질의 변화)

  • 장명숙;박미원;박용곤
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.133-140
    • /
    • 1995
  • This investigation was undertaken for the purpose of studying the changes of pectic substances in alcohol insoluble solids(AIS) extracted from cucumbers pickled in salt. The preparation methods were brining the cucumbers in 10% NaCl solution (bolied, method A), 20% NaCl solution(bolied, method B) and 20% NaCl solution(cool to $25^{\circ}C$ after boiling, method C). The composition ratio of hot water soluble pectin(HWSP) in AIS decreased during brining, while that of 0.4% sodium hexametaphosphate soluble pectin(NaSP) increased remarkably. The contents of Ca and Mg in AIS increased regardless of preparation methods used. By DEAE-cellulose chromatography, HWSP from fresh and brined cucumbers were divided into six fracitons. 0.2M peak was the main fraction in fresh cucumber, whereas 0.05M and 0.2M peak were the main fraction in pickled cucumbers. On the other hands, NaSP from fresh and brined cucumbers were divided into five fractions and 0.4M peak was the main fraction. However, the composition ratios of galacturonic acid and neutral sugar of 0.4M fraction in brined cucumbers were higher than those of fresh cucumber.

  • PDF

A Study on Relationship between Corrosion Characteristics and Salt Concentration of Anti-corrosive Paint (방청도료의 부식특성과 염분농도의 상관관계에 관한 연구)

  • Moon, Kyung-Man;Lee, Myeong-Woo;Lee, Myeong-Hoon;Kim, Hye-Min;Baek, Tae-Sil
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • Recently, many types of constructional steels have been often exposed to under severe corrosive environments due to acid rain with increasing environmental contamination. In order to inhibit their corrosion in severe corrosive environments, a painting method has been widely applied to numerous constructional steels of land as well as marine. Therefore, development of paint having a good quality of corrosion resistance is considered to be very important. In this study, four types of anti-corrosive paints (AP: Phenol epoxy, AC: Ceramic epoxy, AT: Coal tar epoxy, AH: High solid epoxy) were coated to the specimens, and then, were immerged in various salt solutions (0.1, 0.3, 3, 6, 9 and 15% NaCl solutions) for 11 days. And, the corrosion resistance of these samples by effect of osmotic pressure with salt concentration was investigated with electrochemical methods such as measurement of corrosion potential, impedance and corrosion current density. The corrosion current densities of all samples (AC, AT and AH) submerged in 3% NaCl solution exhibited the smallest values compared to other salt solutions. However, in the case of lower values of salt solutions than 3% NaCl solution, the corrosion current density increased again because it makes easier for water, dissolved oxygen and chloride ion etc. to invade toward inner side of coating film due to increasing of the osmotic pressure than 3% NaCl solution, but in the case of higher values of salt solutions than 3% NaCl solution, the coating film is easily deteriorated due to high concentration of chloride ion rather than the osmotic pressure, which resulted in increasing the corrosion current density. In particular, the AC sample indicated the best corrosion resistance in 6% NaCl solution compared to other samples. Consequently, it is considered that the corrosion mechanism of the coated steel plate is completely different from bare steel plate, and the corrosion resistance of coating film by osmotic pressure and chloride ion depend on various types of epoxy of paint in NaCl solution.

A Study on the Corrosion Fatigue Fracture of U-notch Radius (U-노치반경에 따른 부식피로 파괴거동)

  • 이장규;윤종희;인승현;우창기;신관수;최양호;박성완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.58-63
    • /
    • 2002
  • This study has performed rotary bending fatigue testing that smooth specimen using SM45C materials and notched specimen whose radii were R6, R4 and R2, were processed in 3% NaCl aqueous solutions or in the air. The results are as followed; 1. In the air fatigue limit at 10$^{7}$ cycles remarkably reduced as notch radius goes small. 2. In 3% NaCl aqueous solution fatigue strength at 10$^{6}$ cycles also had large range of reduction as notch radius goes small. 3. Comparing fatigue strength in the air, fatigue strength at 10$^{6}$ cycles in 3% NaCl aqueous solution reduced by 46.2% at smooth specimen, 55.3% at R6 notch radius, 45.8% at R4 and 39.7% at R2 respectively. 4. The reason that fatigue strength reduced in the reduction of notch radius sire was because the surface of notch exposed in corrosion was small and consequently it was less corroded.

  • PDF

Studies on the Functional Properties of Sesame and Perilla Protein Isolate (참깨와 들깨 단백질의 기능성에 관한 연구)

  • Park, Hyun-Sook;Ahn, Bin;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.350-356
    • /
    • 1990
  • Functional properties such as nitrogen solubility, emulsifying property, foaming property, and water and oil absorption of sesame and perilla protein isolates were determined at pH range of 2-10 and ionic strength of 0-0.5M NaCl. Nitrogen solubility of protein isolates in distilled water showed minimum value at pH6.0 in sesame and at pH 4.0 in perilla and soybean protein isolates, and significantly increased above pH 8.0 in all samples. Addition of 0.1M NaCl solution increased nitrogen solubility, however, decreased in 0.5M NaCl solution. Emulsion activities of all the protein isolates showed minimum value at pH 4.0 and increased in 0.1M NaCl solutions while it was reduced in 0.5M NaCl solutions. The perilla protein isolate showed higher emulsion activity than that of soybean and sesame protein isolates at above pH 6.0. Foaming capacities of sesame and perilla protein isolates were lower than soybean protein isolate and generally all of the samples showed higher profiles in NaCl solutions. The foaming stability of soybean isolate decreased abruptly in 10min, while it was slowly decreased for sesame and perilla isolates during initial 30 min. Oil absorption capacity of perilla protein isolate was higher than that of sesame and soybean protein isolates. Water absorption capacity was similar among the three samples studied.

  • PDF

The Separation Performance of Disc Plate and Frame Type Reverse Osmosis Modules (원판틀형 역삼투 모듈의 투과성능 비교)

  • 박민수;배성렬;정건용
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.75-83
    • /
    • 1997
  • The disc plate and frame type modules for reverse osmosis were developed using three different types of baffles: linear (Type 1), curved (Type 2) and parallel shapes (Type 3). Separation performance tests were carried out for the modules using NaCl and sucrose solutions under the various concentrations and operating pressures. The permeation flux and solute rejection ratio for Type 3 module were the highest within operating pressure (35bar) and flow rate (6 l/min). The flux improvement ratio of Type 2 or 3 to Type 1 for NaCl solution decreased as operating pressure increased: flux improvement ratios of Type 3 for 1wt% of NaCl solution were about 100 and 10% at 10 and 35bar, respectively. However, the flux improvement ratio for sucrose solutions varied with the operating pressure and concentration. The permeation flux for Type 3 depended on the flow rate linearly, which is higher than that of turbulent flow region in the smooth channel.

  • PDF

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.

Quality Change of Sliced Citron (Citrus junos Sieb.) according to Browning Inhibitor Treatment (갈변방지제 처리에 따른 슬라이스 유자의 품질 변화)

  • Lee, Bo-Bae;Cho, Hye-Sung;Cho, Youn-sup;Nam, Seung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.4
    • /
    • pp.419-427
    • /
    • 2020
  • The purpose of this study was to investigate the qualitative changes of the citron by identifying the type of solution and addition of the solution to prevent the browning reaction of the citron in a way that inhibits the browning of the citron. The browning inhibitor solution was investigated using the individual and mixture, and the results of the degree of browning and chromaticity showed that vitamin C+NaCl+cyclodextrin (CD) had the lowest browning of 0.52. In chromaticity, the ΔE values indicate that the higher the value, the greater the change in color, and the lowest value of the vitamin C+NaCl+CD mixture was 47.0, indicating that there was minimal browning compared to other treatment. The active change of the polyphenol oxidase (PPO) in the citron increased enzyme activity as the browning progressed, and the vitamin C+NaCl+CD solution was the lowest at 68.40 μ/g among the anti-browning solution. Based on these research results, it seems that the CD mixing solution can be used as a citron browning inhibitor.