With growing interest in location-based service (LBS), there is increasing necessity for nearest neighbor (NN) search through query while the user is moving. NN search in such a dynamic environment has been performed through the repeated applicaton of the NN method to the search segment, but this increases search cost because of unnecessary redundant calculation. We propose slabbed continuous nearest neighbor (Slabbed_CNN) search, which is a new method that searches CNN in the search segment while moving, Slabbed_CNN reduces calculation costs and provides faster services than existing CNN by reducing the search area and calculation cost of the existing CNN method through reducing the search segment using slabs.
A conventional missing value problem in the statistical analysis k-Nearest Neighbor(KNN) method are used for a simple imputation method. When one of the k-nearest neighbors is an extreme value or outlier, the KNN method can create a bias. In this paper, we propose a Weighted k-Nearest Neighbors(WKNN) imputation method that can supplement KNN's faults. A Monte-Carlo simulation study is also adapted to compare the WKNN method and KNN method using real data set.
Object recognition techniques using principal component analysis are disposed to be decreased recognition rate when lighting change of image happens. The purpose of this thesis is to propose an object recognition technique using new PCA analysis method that discriminates an object in database even in the case that the variation of illumination in training images exists. And the object recognition algorithm proposed here represents more enhanced recognition rate using improved k-Nearest Neighbor. In this thesis, we proposed an object recognition algorithm which creates object space by pre-processing and being learned image using histogram equalization and median filter. By spreading histogram of test image using histogram equalization, the effect to change of illumination is reduced. This method is stronger to change of illumination than basic PCA method and normalization, and almost removes effect of illumination, therefore almost maintains constant good recognition rate. And, it compares ingredient projected test image into object space with distance of representative value and recognizes after representative value of each object in model image is made. Each model images is used in recognition unit about some continual input image using improved k-Nearest Neighbor in this thesis because existing method have many errors about distance calculation.
The Transactions of the Korea Information Processing Society
/
v.6
no.1
/
pp.32-41
/
1999
In spatial database system, the nearest neighbor query occurs frequently and requires the processing cost higher than other spatial queries do. The number of nodes to be searched in the index can be minimized for optimizing the cost of processing the nearest neighbor query. The optimal search distance is pr9posed for the measurement of a search distance to accurately select the nodes which will be searched in the nearest neighbor query. In this paper, we prove properties of the optimal search distance in N-dimensional. We show through experiments that the performance of query processing of our method is superior to other method using maximum search distance.
Journal of the Korea Society of Computer and Information
/
v.10
no.1
s.33
/
pp.85-92
/
2005
Recently, query processing techniques for the multi-dimensional data like images have been widely used to perform content-based retrieval of the data . Range query and Nearest neighbor query are widely used multi dimensional queries . This paper Proposes the efficient pruning strategies for k-nearest neighbor query in R-tree variants indexing structures. Pruning strategy is important for the multi-dimensional indexing query processing so that search space can be reduced. We analyzed the Pruning strategies and perform experiments to show overhead and the profit of the strategies. Finally, we propose best use of the strategies.
In multimedia database systems, the k nearest neighbor query occurs frerluently and requires the processing cost higher than other spatial queries do. The numberof searched nodes and the computation time in an index can be minimized for optimizing the cost of processing the k nearest neighbor query. In this paper, we propose the search distance which can reduce the computation time of the optimal search distance.
We introduce a machine learning-based web application to help travel agents plan a package tour schedule. K-nearest neighbor (KNN) classification predicts the optimal tourists' dwelling time based on a variety of information to automatically generate a convenient tour schedule. A database collected in collaboration with an established travel agency is fed into the KNN algorithm implemented in the Python language, and the predicted dwelling times are sent to the web application via a RESTful application programming interface provided by the Flask framework. The web application displays a page in which the agents can configure the initial data and predict the optimal dwelling time and automatically update the tour schedule. After conducting a performance evaluation by simulating a scenario on a computer running the Windows operating system, the average response time was 1.762 s, and the prediction consistency was 100% over 100 iterations.
An, Fengwei;Mihara, Keisuke;Yamasaki, Shogo;Chen, Lei;Mattausch, Hans Jurgen
JSTS:Journal of Semiconductor Technology and Science
/
v.16
no.4
/
pp.405-414
/
2016
IC-implementations provide high performance for solving the high computational cost of pattern matching but have relative low flexibility for satisfying different applications. In this paper, we report an associative memory architecture for k nearest neighbor (KNN) search, which is one of the most basic algorithms in pattern matching. The designed architecture features reconfigurable vector-component parallelism enabled by programmable switching circuits between vector components, and a dedicated majority vote circuit. In addition, the main time-consuming part of KNN is solved by a clock mapping concept based weighted frequency dividers that drastically reduce the in principle exponential increase of the worst-case search-clock number with the bit width of vector components to only a linear increase. A test chip in 180 nm CMOS technology, which has 32 rows, 8 parallel 8-bit vector-components in each row, consumes altogether in peak 61.4 mW and only 11.9 mW for nearest squared Euclidean distance search (at 45.58 MHz and 1.8 V).
Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.23
no.1
/
pp.39-47
/
2005
In this study, three-dimensional information of submarine topography acquired by assembling DGPS method and echo sounder which mainly used in the marine survey. Moreover, the hopper dredging capacity in harbor public affair has been calculated by utilizing kriging, radial basis function and nearest neighbor interpolation. Also, utilization of DGPS/Echo sounder method in calculation of the dredging capacity have been confirmed by comparing and analyzing the hopper dredging capacity and the actual one as per each interpolation. According to this comparison result, in case of applying kriging interpolation, some 1.89% of error rate has been shown as difference of the contents is 15,364 ㎥ and in case of applying radial basis function interpolation and nearest neighbor interpolation, 3.9% and 4.4% of error rates have respectively shown. In case the study for application of the proper interpolation as per characteristics of submarine topography, is preceded in calculation of the dredging capacity relevant to harbor public affairs, it is expected that more speedy and correct calculation for the dredging capacity can be made.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.