• Title/Summary/Keyword: 1-mass model

Search Result 2,086, Processing Time 0.029 seconds

STRUCTURE OF THE SPIRAL GALAXY NGC 300 II. Applications of the Mass Models

  • Rhee, Myung-Hyun;Chun, Mun-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.11-21
    • /
    • 1992
  • Applying mass model to disk galaxy NGC 300, since the observed rotation curve of NGC 300 is flatter than Toomre's mass model n = 1, two cases are used; obtaining parameters $a^n$ and $b^n$ from the polynomial fitting of the observed rotation curve (case A) and from the least square fitting between the observed rotation curve and model rotation curve (case B). In any case, n bas a fixed value of 1. Brandt's mass model is also discussed. which has a shape parameter n = 1.4. Calculated total mass and total mass to luminosity ratio are $3.3{\times}10^{10}M_{\odot}$, l2.1 for case A and $2.8{\times}10^{10}M_{\odot}$, 10.3 for case B. In case of Brandt's model, the values are $4.2{\times}10^{10}M_{\odot}$ and 15.4. The rise in the local mass to luminosity ratio in the outer part of NGC 300 implies existence of massive halo. Other dynamical properties are also discussed.

  • PDF

Remedy for ill-posedness and mass conservation error of 1D incompressible two-fluid model with artificial viscosities

  • Byoung Jae Kim;Seung Wook Lee;Kyung Doo Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4322-4328
    • /
    • 2022
  • The two-fluid model is widely used to describe two-phase flows in complex systems such as nuclear reactors. Although the two-phase flow was successfully simulated, the standard two-fluid model suffers from an ill-posed nature. There are several remedies for the ill-posedness of the one-dimensional (1D) two-fluid model; among those, artificial viscosity is the focus of this study. Some previous works added artificial diffusion terms to both mass and momentum equations to render the two-fluid model well-posed and demonstrated that this method provided a numerically converging model. However, they did not consider mass conservation, which is crucial for analyzing a closed reactor system. In fact, the total mass is not conserved in the previous models. This study improves the artificial viscosity model such that the 1D incompressible two-fluid model is well-posed, and the total mass is conserved. The water faucet and Kelvin-Helmholtz instability flows were simulated to test the effect of the proposed artificial viscosity model. The results indicate that the proposed artificial viscosity model effectively remedies the ill-posedness of the two-fluid model while maintaining a negligible total mass error.

VELOCITY ANALYSIS OF M13 BY MAXIMUM LIKELIHOOD METHOD

  • Oh, K.S.;Lin, D. N. C.
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 1992
  • We present new approach to analysis of velocity data of globular clusters. Maximum likelihood method is applied to get model parameters such as central potential, anisotropy radius, and total mass fractions in each mass class. This method can avoid problems in conventional binning method of chi-square. We utilize three velocity components, one from line of sight radial velocity and two from proper motion data. In our simplified scheme we adopt 3 mass-component model with unseen high mass stars, intermediate visible stars, and low mass dark remnants. Likelihood values are obtained for 124 stars in M13 for various model parameters. Our preferred model shows central potential of $W_o=7$ and anisotropy radius with 7 core radius. And it suggests non-negligible amount of unseen high mass stars and considerable amount of dark remnants in M13.

  • PDF

Initial Mass Function and Star Formation History in the Small Magellanic Cloud

  • Lee, Ki-Won
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.362-374
    • /
    • 2014
  • This study investigated the initial mass function (IMF) and star formation history of high-mass stars in the Small Magellanic Cloud (SMC) using a population synthesis technique. We used the photometric survey catalog of Lee (2013) as the observable quantities and compare them with those of synthetic populations based on Bayesian inference. For the IMF slope (${\Gamma}$) range of -1.1 to -3.5 with steps of 0.1, five types of star formation models were tested: 1) continuous; 2) single burst at 10 Myr; 3) single burst at 60 Myr; 4) double bursts at those epochs; and 5) a complex hybrid model. In this study, a total of 125 models were tested. Based on the model calculations, it was found that the continuous model could simulate the high-mass stars of the SMC and that its IMF slope was -1.6 which is slightly steeper than Salpeter's IMF, i.e., ${\Gamma}=-1.35$.

A Study on Continous and Discontinous Analysis of Tunnels in Jointed Rock Mass (절리 암반터널의 불연속체해석과 연속체해석에 관한 고찰)

  • Lee Joung-Sun;Kim Si-Kyeok;Kim Do-Hoon;Jung Jae-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2005
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two methods : continuous and discontinuous model. Generally, distinct element method(DEM) is applied in discontinuous model, and finite element method(FDM) or finite difference method(FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests are conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC are utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.

Development of Mass Transfer Models for Ammonia Flux Estimation from Sewage Treatment Plants (하수처리장에서의 암모니아 플럭스 산정을 위한 물질전달모형 개발)

  • Sa, Jae-Hwan;Jeon, Eui-Chan;Jeong, Jae-Hak
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.701-711
    • /
    • 2006
  • Sewage treatment plants located near to large cities emit extremely higher concentration of odorous materials. This study evaluated flux profiles of ammonia emitted from the water surface of sewage treatment plants using a dynamic flux chamber. Also, an ammonia overall mass transfer coefficient and a mass transfer model was developed in order to estimate fluxes of ammonia using environment parameters and the flux from the sewage treatment plants. The developed mass transfer model was evaluated through a fitness analysis. Comparison modeled flux applying empirical overall mass transfer coefficients of ammonia and measured ammonia flux show a high linearity with 0.977. The flux ratio of 1.282 demonstrated highly statistical fitness, also. Modeled flux using the mass transfer model was compared with measured flux. In result, it indicated that empirical overall mass transfer coefficients were similar to measured flux. The mass transfer model using the empirical overall mass transfer coefficient developed in this study was proved to be an easy and effective method to make accurate and precise predictions for ammonia flux discharged from sewage treatment plants.

A study on 1D modeling techniques for collision analysis of train coupling (열차의 1차원 연결 해석 모델링 기법 연구)

  • Kim, Hyung-Jun;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1203-1209
    • /
    • 2006
  • One dimensional collision analysis is often used to simulate a train-to-train coupling or collision accident. But there are various numerical modeling techniques utilized for dynamic models of rolling stocks such as a lumped-spring-mass model or a bar-mass model. In rolling stock industries, a lumped-spring-mass model is mainly applied without consideration of bogie attachments separately. In this case, a dynamic stiffness coefficient is introduced to compensate the overestimated car mass effects due to the linkage stiffness of bogies and seats. In this paper, the effects of dynamic stiffness coefficients and wheel-rail friction coefficients were studied by simulating a bar-mass model with bogie attachments separately.

  • PDF

Small scale experimental testing to verify the effectiveness of the base isolation and tuned mass dampers combined control strategy

  • Petti, Luigi;Giannattasio, Giovanni;De Iuliis, Massimiliano;Palazzo, Bruno
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.57-72
    • /
    • 2010
  • This paper presents the most significant results obtained within a broad-ranging experimental program aiming to evaluate both the effectiveness and the robustness of a Base Isolation (BIS) and a Tuned Mass Damper (TMD) combined control strategy (BI & TMD). Following a brief description of the experimental model set-up and the adopted kinematic scaling technique, this paper describes the identification procedures carried out to characterize the system''s model. The dynamic response of a small-scale model to recorded earthquake excitations, which has been scaled by using the Buckingham pi-theorem, are later presented and discussed. Finally, the effectiveness and robustness of the combined control strategy is evaluated by comparing the model's dynamic response. In particular, reduction in relative displacements and absolute accelerations due to the application of different mass damping systems is investigated.

Simplified 1-Dimensional Model of Gas-Solid Reactor : Adapting to Coal Reduction Rotary Kiln (1차원 기체-고체 반응기 모델의 로터리킬른 환원로 적용)

  • Hahn, Taekjin;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.75-78
    • /
    • 2012
  • Rotary kiln furnace is one of the most widely used reactors in industrial field. In this paper, 0-dimensional heat and mass balance for direct coal flame rotary kiln was performed preferentially, then a simplified 1-dimensional model was developed based on 0-dimensional analysis data to proceed additional thermal analysis. Compared the results with the currently operating rotary kiln data to validate 1-dimensional model. Through this procedure, it can help to derive fundamental idea for design and operation of rotary kiln.

  • PDF

A Study on Optimum Mass of TMD for Improving Seismic Response Control Performance of Retractable-Roof Spatial Structure (개폐식 대공간 구조물의 지진 응답 제어 성능 향상을 위한 TMD의 최적 질량에 관한 연구)

  • Kim, Dong-Hyung;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.93-100
    • /
    • 2019
  • In this study, the retractable-roof spatial structure was chosen as the analytical model and a tuned mass damper (TMD) was installed in the analytical model in order to control the seismic response. The analysis model is mainly consisted of runway trusses (RT) and transverse trusses (TT), and the displacement response was analyzed by installing TMD on those trusses. The mass of the single TMD which is installed in the analytical model was set to 1% of the total structure mass and the total TMD mass ratio was set to be 8% or 6%. In addition, the mass of a single TMD was varied depending on the number of installations. As a result of analyzing the optimal number of installations of TMD, the displacement response was reduced in all cases compared to the case without TMD. Above all, the case with 8 TMDs was the most effective in reducing he displacement response. However, in this case, as the load on the upper structure of the retractable-roof spatial structure increases, the total mass ratio of TMD was maintained and the number of TMDs was increased to reduce the mass ratio of one TMD.