• Title/Summary/Keyword: 1-aminocyclopropane-1-carboxylate

Search Result 38, Processing Time 0.022 seconds

Biochemical Characterization of 1-Aminocyclopropane-1-Carboxylate Oxidase in Mung Bean Hypocotyls

  • Jin, Eon-Seon;Lee, Jae-Hyeok;Kim, Woo-Taek
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • The final step in ethylene biosynthesis is catalyzed by the enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase. ACC oxidase was extracted from mung bean hypocotyls and its biochemical characteristics were determined. In vitro ACC oxidase activity required ascorbate and $Fe^{2+}$, and was enhanced by sodium bicarbonate. Maximum specific activity (approximately 20 nl ethylene $h^{-1}$ mg $protein^{-1}$) was obtained in an assay medium containing 100 mM MOPS (pH 7.5), $25\;{\mu}M$ $FeSO_4$, 6 mM sodium ascorbate, 1 mM ACC, 5 mM sodium bicarbonate and 10% glycerol. The apparent $K_m$ for ACC was $80{\pm}3\;{\mu}M$. Pretreating mung bean hypocotyls with ethylene increased in vitro ACC oxidase activity twofold. ACC oxidase activity was strongly inhibited by metal ions such as $Co^{2+}$, $Cu^{2+}$, $Zn^{2+}$, and $Mn^{2+}$, and by salicylic acid. Inactivation of ACC oxidase by salicylic acid could be overcome by increasing the $Fe^{2+}$ concentration of the assay medium. The possible mode of inhibition of ACC oxidase activity by salicylic acid is discussed.

  • PDF

Effects of Light on the Expression of 1-Aminocyclopropane-1-Carboxylic Acid Synthase and Oxidase Genes in Mung Bean Hypocotyls

  • Song, Ju-Dong;Lee, Dong-Hee;Rhew, Tae-Hyong;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.189-193
    • /
    • 2003
  • The effects of light on the regulation of ethylene biosynthesis during development of mung bean seedlings were investigated by monitoring the differential expression of seven 1-aminocyclopropane-l-carboxylate (ACC) synthase and two ACC oxidase genes. Among them, only the expression of VR-ACS1, VR-ACS6, VR-ACS7, VR-ACO1 and VR-AC02 was observable in etiolated mung bean hypocotyls. When the seedlings were de-etiolated for 1 d under a light/dark cycle of 16 h/8 h, the expression of VR-ACS6, VR-ACS7 and VR-ACO2 was controlled negatively by light. The expression of VR-ACS1 showed a tendency to increase until 6 h after a dark-to-light transition and then decreased at 12 h. On the other hand, the expression of VR-ACO1 was mostly constitutive up to 12 h after the dark-to-light transition. The opening of hypocotyl hooks during de-etiolation in the light was stimulated by the inhibition of the action of endogenous ethylene in the presence of 1-MCP. These results suggest that the negative regulation of light on the expression of ACC synthase and ACC oxidase genes eventually results in the inhibition of ethylene production with an acceleration of the opening of apical hooks.

  • PDF

Differential Response of Etiolated Pea Seedlings to Inoculation with Rhizobacteria Capable of Utilizing 1-Aminocydopropane-1-Carboxylate or L-Methionine

  • Shaharoona, Baby;Arshad, Muhammad;Khalid, Azeem
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • The majority of soil microorganisms can derive ethylene from L-methionine (L-MET), while some rhizobacteria can hydrolyze 1-aminocyclopropane-1-carboxylate (ACC) due to their ACC-deaminase activity. In this study, three strains having either ACC-deaminase activity (Pseudomonas putida biotype A, $A_7$), or the ability to produce ethylene from L-MET (Acinetobacter calcoaceticus, $M_9$) or both (Pseudomonas fluorescens, $AM_3$) were used for inoculation. The highly ethylene specific bioassay of a classical 'triple' response in pea seedlings was used to investigate the effect of the inoculation with the rhizobacteria in the presence of 10 mM ACC or L-MET. The exogenous application of ACC had a concentration-dependent effect on the etiolated pea seedlings in creating the classical 'triple' response. The inoculation with P. putida diluted the effect of ACC, which was most likely due to its ACC-deaminase activity. Similarly, the application of $Co^{2+}$ reduced the ACC-imposed effect on etiolated pea seedlings. In contrast, the inoculation of A. calcoaceticus or P. fluorescens in the presence of L-MET caused a stronger classical 'triple' response in etiolated pea seedlings; most likely by producing ethylene from L-MET. This is the first study, to our knowledge, reporting on the comparative effect of rhizobacteria capable of utilizing ACC vs L-MET on etiolated pea seedlings.

Isolation and Identification of Phosphate Solubilizing Bacteria from Chinese Cabbage and Their Effect on Growth and Phosphorus Utilization of Plants

  • Poonguzhali, Selvaraj;Madhaiyan, Munusamy;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.773-777
    • /
    • 2008
  • Phosphate solubilizing bacteria (PSB) were isolated from the rhizosphere of Chinese cabbage and screened on the basis of their solubilization of inorganic tricalcium phosphate in liquid cultures. Ten strains that had higher solubilization potential were selected, and they also produced indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and siderophores. The strains were identified to be members of Pseudomonas, by 16S rDNA sequence analysis. Seed bacterization with PSB strains increased the root elongation and biomass of Chinese cabbage in seedling culture, although they had no effect on phosphorus uptake of plants. The plant growth promotion by PSB in this study could be due to the production of phytohormones or mechanisms other than phosphate solubilization, since they had no effect on P nutrition.

Establishment of protocol for genetic transformation of carnation with 1-aminocyclopropane-carboxylate deaminase (acdS) gene

  • Jeong, Hui Yeong;Naing, Aung Htay;Kim, Chang Kil
    • Journal of Plant Biotechnology
    • /
    • v.48 no.2
    • /
    • pp.93-99
    • /
    • 2021
  • This study was conducted to develop an Agrobacterium-mediated genetic transformation protocol for the carnation cv. "Jinju" to counteract its ethylene sensitivity. The new protocol involves the use of an improved shoot regeneration medium, optimized minimal concentrations of the selective agent, a pre-culture period, and co-cultivation periods. Silver nanoparticles (NAg) added at a concentration of 2.0 μM to the Murashige and Skoog (MS) basal shoot regeneration medium supplemented with 0.1 mg/L indole-3-butyric-acid (IBA) and 0.2 mg/L thidiazuron (TDZ) improved the shoot regeneration efficiency, number of shoots per explant, and plant growth compared to the control without the addition of NAg. The phosphinothricin (PPT) concentration of 1.0 mg/L was determined to be the minimal and optimal concentration for the selection of putative transgenic plants. When the explants were infected with Agrobacterium cells harboring the acdS gene, the explants that were pre-cultured for three days induced more putative transgenic plants than those that were co-cultivated for four days. Therefore, we expect that the results of this study will benefit researchers who are developing genetic transformations of carnations.

Effect of Photosynthesis on Ozone-Induced Ethylent Evolution from Tomato Plants (토마토 식물에 있어서 광합성이 유존유동성의 에틸렌 생성에 미치는 영향)

  • 배공영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.307-314
    • /
    • 1996
  • The rate of evolution of ethylent by tomato plants was rapidly increased by ozone fumigation. In the present study, the mechanism of ethylent evolution by ozone was investigated in experiments with aminoethoxyvinylglycine (AVG) and tiron, which inhibit the formation of ethylene and peroxidation of lipids, respectively. Pretreatment with AVG significantly inhibited the ozone-induced ethylent evolution, but the treatment of plants with tiron did not inhibit. These results indicate that the induction of the evolution of ethylene by ozone involves the pathway via aminocyclopropane-1-carboxylate (ACC), while not released as a result of the peroxidation of lipids. Ozone-induced ethylent evolution was greater in dar- than light-incubated, intact tomato plants. The difference between dark- and light-ethylene evolution was examined with diuron, an inhibitor of photosynthetic electron transport. The inhibitor treatment promoted ethylent evolution. These results suggest that ethylent retention and metabolism in plants were regulated by internal $CO_2$ levels which, in turn, were controlled in large part by photosynthesis. Thus, ethylene was retained in illuminated leaf tissue under low intenal $CO_2$ concentration which may develop in a sealed container without exogenously supplied $CO_2$.

  • PDF

Comparison of Plant Growth Promoting Methylobacterium spp. and Exogenous Indole-3-Acetic Acid Application on Red Pepper and Tomato Seedling Development (식물생장촉진 세균 Methylobacterium spp. 와 IAA 처리가 고추와 토마토 유묘의 생육에 미치는 영향)

  • Boruah, Hari P. Deka;Chauhan, Puneet S.;Yim, Woo-Jong;Han, Gwang-Hyun;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.96-104
    • /
    • 2010
  • A comparative study was performed in gnotobiotic and greenhouse conditions to evaluate the effect of exogenous application of indole-3-acetic acid (IAA) and inoculation of Methylobacterium spp. possessing 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and IAA activity on red pepperand tomato seedling growth and development. Application of 1.0 ${\mu}g\;mL^{-1}$ IAA positively influenced root growth while high concentrations (>10.0 ${\mu}g\;mL^{-1}$) suppressed root growth of red pepper and tomato under gnotobiotic condition. On the other hand, inoculation of Methylobacterium strains with ACCD activity and IAA or without IAA enhanced root growth in both plants. Similarly, under greenhouse condition the inoculation of Methylobacterium sp. with ACCD activity and IAA enhanced plant fitness recorded as average nodal length and specific leaf weight (SLW) but the effect is comparable with the application of low concentrations of IAA. Seedling length was significantly increased by Methylobacterium strains while total biomass was enhanced by Methylobacterium spp. and exogenous applications of < 10.0 ${\mu}g\;mL^{-1}$ IAA. High concentrations of IAA retard biomass accumulation in red pepper and tomato. These results confirm that bacterial strains with plant growth promoting characters such as IAA and ACCD have characteristic effects on different aspects of growth of red pepper and tomato seedlings which is comparable or better than exogenous applications of synthetic IAA.

Molecular Characterization of a Transient Expression Gene Encoding for 1-Aminocyclopropane-1-carboxylate Synthase in Cotton (Gossypium hirsutum L.)

  • Wang, Xia;Zhang, Ying;Zhang, Jiedao;Cheng, Cheng;Guo, Xingqi
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.791-800
    • /
    • 2007
  • Ethylene performs an important function in plant growth and development. 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), the key enzyme involved in ethylene biosynthesis, has been the focus of most ethylene studies. Here, a cotton ACS gene referred to as Gossypium hirsutum ACS1 (GhACS1), was isolated. The full-length cDNA of GhACS1 encodes for a 476-amino acid protein which harbors seven conserved regions, 11 invariant amino acid residues, and the PLP binding active site, all of which characterize ACC synthases. Alignment analysis showed that GhACS1 shared a high degree of identity with other known ACC synthases from different species. Two introns were detected in the genomic DNA sequence, and the results of Southern blot analysis suggested that there might be a multi-gene family encoding for ACC synthase in cotton. From the phylogenetic tree constructed with 24 different kinds of ACC synthases, we determined that GhACS1 falls into group II, and was closely associated with the wound-inducible ACS of citrus. The analysis of the 5' flanking region of GhACS1 revealed a group of putative cis-acting elements. The results of expression analysis showed that GhACS1 displayed its transient expression nature after wounding, abscisic acid (ABA), and $CuCl_2$ treatments. These results indicate that GhACS1, which was transiently expressed in response to certain stimuli, may be involved in the production of ethylene for the transmission of stress signals.