1 |
McKeon, T.A., J.C. Fernandez-Maculet, and S.F. Yang. 1995. Biosynthesis and metabolism of ethylene, p. 118-139. In P.J. Davies (ed.), Plant Hormones, Physiology, Biochemistry and Molecular Biology-1995. Kluwer Academic Publishers, Dordrecht, Netherlands
|
2 |
Primrose, S.B. 1977. Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli. J. Gen. Mircrobiol. 98, 519-528
DOI
|
3 |
Shaharoona, B., M. Arshad, and Z.A. Zahir. 2006a. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol. 42, 155-159
DOI
ScienceOn
|
4 |
Ton, J., S. Davison, S.C.M. van Wees, L.C. van Loon, and C.M.J. Pieterse. 2001. The Arabidopsis ISRI locus controlling rhizobacteria- mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125, 652--661
DOI
ScienceOn
|
5 |
Abeles, F.B., P.W. Morgan, and M.E. Saltveit, Jr. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, CA, USA
|
6 |
Akhtar, M.J., M. Arshad, A. Khalid, and M.H. Mahmood. 2005. Substrate-dependent biosynthesis of ethylene by rhizosphere soil fungi and its influence on etiolated pea seedlings. Pedobiologia 49, 211-219
DOI
ScienceOn
|
7 |
Belimov, A.A., V.I. Safronova, and T. Mimura. 2002. Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing-1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can. J. Microbiol. 48, 189-199
DOI
ScienceOn
|
8 |
Chen, Q.C. and A.B. Bleecker. 1995. Analysis of ethylene signaltransduction kinetic associated with seedling-growth response and chitinase induction in wild type and mutant Arabidopsis. Plant Physiol. 108, 597-607
DOI
|
9 |
Glick, B.R., D.M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growthpromoting bacteria. J. Theor. Biol. 190, 63-68
DOI
ScienceOn
|
10 |
Ince, J.E. and C.J. Knowles. 1986. Ethylene formation by cell free extract of Escherichia coli. Arch. Microbiol. 146, 151-158
DOI
|
11 |
Flores-Vargas, R.D. and G.W. O'Hara. 2006. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J. Appl. Microbiol. 100, 946-954
DOI
ScienceOn
|
12 |
Ghosh, S., J.N. Penterman, R.D. Little, R. Chavez, and B.R. Glick. 2003. Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol. Biochem. 41, 277-281
DOI
ScienceOn
|
13 |
Lurssen, K., K. Naumann, and R. Schroder. 1979. 1-Aminocyclopropane-1-carboxylic acid an intermediate of the ethylene biosynthesis in higher plants. Z. Pflanzenphysiol. 92, 285-294
DOI
|
14 |
Reid, M.S. 1995. Ethylene in plant growth, development and senescence, p. 486-508. In P.J. Davies (ed.), Plant Hormone, Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, Netherlands
|
15 |
Bleecker, A.B., M.A. Estelle, C. Sommeruille, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 1086-1089
DOI
ScienceOn
|
16 |
Guzman, P. and J.R. Ecker. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Am. Soc. Plant Physiol. 2, 513-523
|
17 |
Arshad, M. and W.T. Frankenberger, Jr. 2002. Ethylene: agricultural sources and applications. Kluwer Academic Publishers, New York, USA
|
18 |
Khalid, A., M. Arshad, and Z.A. Zahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473-480
DOI
ScienceOn
|
19 |
Jia, Y.J, Y. Kakuta, M. Sugawara, T. Igarashi, N. Oki, M. Kisaki, T. Shoji, Y. Kanetuna, T. Horita, H. Matsui, and M. Honma. 1999. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium ctrinum. Biosci. Biotechnol. Biochem. 63, 542-549
DOI
ScienceOn
|
20 |
Nazli, Z.H., M. Arshad, and A. Khalid. 2003. 2-Keto-4-methylthiobutyric acid-dependent biosynthesis of ethylene in soil. Biol. Fertil. Soils 37, 130-135
|
21 |
Nagatsu, T. and K. Yagi. 1966. A simple assay of monoamine oxidase and D-amino acid oxidase by measuring ammonia. J. Biochem. 60, 219-221
DOI
PUBMED
|
22 |
Arshad, M. and W.T. Frankenberger, Jr. 1988. Influence of ethylene produced by soil microorganisms on etiolated pea seedlings. Appl. Environ. Microbiol. 54, 2728-2732
PUBMED
|
23 |
Li, J., D.H. Ovakim, T.C. Charles, and B.R. Glick. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41, 101-105
DOI
|
24 |
Neljubow, D. 1901. Uber die horizontale nutation der stengel von Pisum sativum und einiger anderer pflanzen. Beih. Bot. Zentralbl. 10, 128-138
|
25 |
Shaharoona, B., M. Arshad, Z.A. Zahir, and A. Khalid. 2006b. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol. Biochem. 38, 2971-2975
DOI
ScienceOn
|
26 |
Barry, C.S., E.A. Fox, H. Yen, S. Lee, T. Ying, D. Grierson, and J.J. Giovannoni. 2001. Analysis of ethylene response in the epinastic mutant of tomato. Plant Physiol. 127, 58-66
DOI
|
27 |
Dworkin, M. and J. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592-601
PUBMED
|
28 |
Penrose, D.M. and B.R. Glick. 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol. 41, 368-372
|
29 |
McKeon, T.A., N.E. Hoffmann, and S.F. Yang. 1982. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in waterstressed wheat leaves. Planta 155, 437-443
DOI
ScienceOn
|
30 |
Arshad, M. and W.T. Frankenberger, Jr. 1998. Plant-growth regulating substances in the rhizosphere: microbial production and functions. Adv. Agron. 62, 145-151
|
31 |
Wang, C., E. Knill, B.R. Glick, and G. Defagox. 2000. Effect of transferring 1-aminocycloproane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth promoting and disease suppressive capacities. Can. J. Microbiol. 46, 898-907
DOI
|
32 |
Simons, M., A.J. van der Bij, I. Brand, L.A. de Weger, C.A. Wijffelman, and B.J.J. Lugtenberg. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9, 600-607
DOI
PUBMED
|
33 |
Khalid, A., M.J. Akhtar, M.H. Mahmood, and M. Arshad. 2006. Effect of substrate-dependent microbial produced ethylene on plant growth. Microbiology 75, 231-236
DOI
|