• Title/Summary/Keyword: 1-Decanethiol

Search Result 5, Processing Time 0.023 seconds

The Synthesis of Novel Mono(alkoxy)-, Tris(thio)- and Tetrakis(thio)-Substituted Quinones from the Reactions of p-Chloranil with Various S-Nucleophiles

  • Ibis, Cemil;Yildiz, Mahmut;Sayil, Cigdem
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2381-2386
    • /
    • 2009
  • The tetrakis(thio)-substituted-1,4-benzoquinone products 4a-e, 6, 7, and the mono(alkoxy)-tris(thio)-substituted-1,4- benzoquinone products 5a-e and 8a-e were synthesized from the reactions of p-chloranil with some thiols and mixture of two different thiol compounds in alcohol in the presence of $Na_2CO_3$ at room temperature. The structures of the novel S,S,S,S- and S,S,S,O- substituted products, which were obtained by the reactions of p-chloranil as a starting compound with n-propanethiol, n-pentanethiol, n-decanethiol, n-dodecanethiol, 2-methyl-2-propanethiol, and mixture of n-decanethiol and n-cyclohexanethiol as S-nucleophiles, were characterized by spectroscopic methods.

Effects of Tunneling Current on STM Imaging Mechanism for Alkanethiol Self-assembled Monolayers on Au(111)

  • Mamun, Abdulla Hel Al;Son, Seung-Bae;Hahn, Jae-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.281-285
    • /
    • 2011
  • We investigated the effects of tunneling current on scanning tunneling microscopy (STM) images of 1-octanethiol (OT) and 1-decanethiol (DT) self-assembled monolayers (SAMs). At a low tunneling current, the domain boundaries and ordered alkanethiol molecules were clearly resolved. As the tunneling current was increased at a constant bias voltage, however, the STM images showed disordered structures of the OT and DT SAMs. As the tunneling current was reduced back to low values, the ordered structures of the alkanethiol molecules reappeared. The reversibility of the process suggests that the sulfur head groups did not rearrange under any of the tunneling current conditions. On the basis of our observations, which are inconsistent with the standard model for STM imaging of molecules on metal surfaces, we consider the STM imaging mechanism in terms of a two-region tunneling junction model.

Preparation of Copper Nanoparticles Protected by Chemisorption via Thiol Group (Thiol기의 화학흡착을 이용한 구리 나노입자의 제조)

  • Kim, Jung-Teag;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1069-1074
    • /
    • 2008
  • In this work, we made a study for the 3D SAM formation of octanethiol, decanethiol, and dodecanethiol on copper nanoparticles and we verified stability of the copper particle depending on the ratio of dodecanethiol to copper. The reaction was performed in a one-phase system under nitrogen atmosphere and the thiolated copper particles could be obtained by centrifugation. We could confirm that the nanoparticles consisted of a spherical shape of 3~6 nm from TEM images. FT-IR, XPS and TGA results showed that alkanethiols were chemisorbed via thiol group and the packing density of the alkanethiols on copper surface increased with the alkyl chain lengths. XRD patterns gave us useful information about superlattice formations. Finally, $Cu_2O$ was formed when the molar ratio of dodecanethiol to copper is less than unity and copper nanoparticles formed more compact 3D SAMs when the molar ratio of dodecanethiol to copper was 1.25.

Use of Self Assembled Monolayer in the Cathode/Organic Interface of Organic Light Emitting Devices for Enhancement of Electron Injection

  • Manna, U.;Kim, H.M.;Gowtham, M.;Yi, J.;Sohn, Sun-young;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1343-1346
    • /
    • 2005
  • Self assembled monolayers (SAM) are generally used at the anode/organic interface to enhance the carrier injection in organic light emitting devices, which improves the electroluminescence performance of organic devices. This paper reports the use of SAM of 1-decanethiol (H-S(CH2)9CH3) at the cathode/organic interface to enhance the electron injection process for organic light emitting devices. Aluminum (Al), tris-(8-hydroxyquionoline) aluminum (Alq3), N,N'-diphenyl-N,N'-bis(3 -methylphenyl)-1,1'- diphenyl-4,4'-diamine (TPD) and indium-tin-oxide (ITO) were used as bottom cathode, an emitting layer (EML), a hole-transporting layer (HTL) and a top anode, respectively. The results of the capacitancevoltage (C-V), current density -voltage (J-V) and brightness-voltage (B-V), luminance and quantum efficiency measurements show a considerable improvement of the device performance. The dipole moment associated with the SAM layer decreases the electron schottky barrier between the Al and the organic interface, which enhances the electron injection into the organic layer from Al cathode and a considerable improvement of the device performance is observed. The turn-on voltage of the fabricated device with SAM layer was reduced by 6V, the brightness of the device was increased by 5 times and the external quantum efficiency is increased by 0.051%.

  • PDF

Coexistence of Closely Packed c(4 × 2) and Striped Phases in Self-Assembled Monolayers of Decylthiocyanates on Au(111)

  • Choi, Young-Sik;Kang, Hun-Gu;Choi, In-Chang;Lee, Nam-Suk;Cho, Jun-Hyung;Jang, Chang-Hyun;Noh, Jaeg-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.901-904
    • /
    • 2010
  • Decylthiocyanate (DTC) self-assembled monolayers (SAMs) on Au(111) were prepared by solution and vapor phase deposition methods at $50^{\circ}C$ for 24 h. The formation and surface structure of DTC SAMs were examined using scanning tunneling microscopy (STM). STM imaging revealed that DTC SAMs formed in 1 mM ethanol solution at $50^{\circ}C$ were composed of small ordered domains with lateral dimensions of a few nanometers and disordered phases, whereas DTC SAMs formed in the vapor phase at $50^{\circ}C$ contained two ordered phases: a closely packed c($4{\times}2$) superlattice and a striped phase with an interstripe spacing of 2.6 - 2.8 nm. It was also found that the ordered domain and vacancy island formation for DTC SAMs on Au(111) differs significantly from that of decanethiol SAMs, suggesting that adsorption mechanism is different from each other. From this study, it was confirmed that DTC SAMs with a high degree of structural order can be obtained by vapor phase deposition.