Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.1.281

Effects of Tunneling Current on STM Imaging Mechanism for Alkanethiol Self-assembled Monolayers on Au(111)  

Mamun, Abdulla Hel Al (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University)
Son, Seung-Bae (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University)
Hahn, Jae-Ryang (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University)
Publication Information
Abstract
We investigated the effects of tunneling current on scanning tunneling microscopy (STM) images of 1-octanethiol (OT) and 1-decanethiol (DT) self-assembled monolayers (SAMs). At a low tunneling current, the domain boundaries and ordered alkanethiol molecules were clearly resolved. As the tunneling current was increased at a constant bias voltage, however, the STM images showed disordered structures of the OT and DT SAMs. As the tunneling current was reduced back to low values, the ordered structures of the alkanethiol molecules reappeared. The reversibility of the process suggests that the sulfur head groups did not rearrange under any of the tunneling current conditions. On the basis of our observations, which are inconsistent with the standard model for STM imaging of molecules on metal surfaces, we consider the STM imaging mechanism in terms of a two-region tunneling junction model.
Keywords
1-Octanethiol; 1-Decanethiol; Self-assembled monolayers; Au(111); Scanning tunneling microscopy (STM);
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Kim, J.; Uchida, H, Honda, N, Hashizume, N.; Hashimoto, Y, Kim, H.; Nishimura, K.; Inoue, M. Jpn. J. Appl. Phys. 2003, 42, 4770.   DOI
2 Salmeron, M.; Neubauer, G.; Folch, A.; Tomitori, M.; Ogletree, D. F.; Sautet, P. Langmuir 1993, 9, 3600.   DOI   ScienceOn
3 Kittel, C. Introduction to Solid State Physics, 5th ed.; John Wiley: New York, 1976; p 154.
4 Inukai, J.; Wakisaka, M.; Itaya, K. Chem. Phys. Lett. 2004, 399, 373.   DOI   ScienceOn
5 Jonkheijm, P.; Weinrich, D.; Schroder, H.; Niemeyer, C. M.; Waldmann, H. Angew. Chem., Int. Ed. 2008, 47, 9618.   DOI   ScienceOn
6 Van Hal, P. A.; Smits, E. C. P.; Geuns, T. C. T.; Akkerman, H. B.; De Brito, B. C.; Perissinotto, S.; Lanzani, G.; Kronemeijer, A. J.; Geskin, V.; Cornil, J. et al. Nat. Nanotechnol. 2008, 3, 749.   DOI   ScienceOn
7 Madueno, R.; Raisanen, M. T.; Silien, C.; Buck, M. Nature 2008, 454, 618.   DOI   ScienceOn
8 Camillone, N.; C. E. Chidsey, D.; Liu, G.; Scoles, G. J. Chem. Phys. 1993, 98, 3503.   DOI   ScienceOn
9 Delamarche, E.; Michel, B.; Gerber, C.; Anselmetti, D.; Guntherodt, H. J.; Wolf, H.; Ringsdorf, H. Langmuir 1994, 10, 2869.   DOI   ScienceOn
10 Poirier, G. E.; Tarlov, M. J. Langmuir 1994, 10, 2853.   DOI   ScienceOn
11 Zhang, L.; Goddard, W. A., III; Jiang, S. J. Chem. Phys. 2002, 117, 7342.   DOI   ScienceOn
12 Lussem, B.; Muller-Meskamp, L.; Karthauser, S.; Waser, R. Langmuir 2005, 21, 5256.   DOI   ScienceOn
13 Poirier, G. E. Langmuir 1999, 15, 1167.   DOI   ScienceOn
14 Poirier, G. E.; Pylant, E. D. Science 1996, 272, 1145.   DOI   ScienceOn
15 Poirier, G. E. Chem. Rev. 1997, 97, 1117.   DOI   ScienceOn
16 Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216.   DOI   ScienceOn
17 Bucher, J. P.; Santesson, L.; Kern, K. Appl. Phys. A: Solids Surf. 1994, 59, 135.   DOI
18 Ulman, A. An Introduction to Ultrathin Organic Films; Academic Press: Boston, 1990.
19 Schonenberger, C.; Jorritsma, J.; Sondag-Huethorst, J. A. M.; Fokkink, L. G. J. J. Phys. Chem. 1995, 99, 3259.   DOI   ScienceOn
20 Bumm, L. A.; Arnold, J. J.; Dunbar, T. D.; Allara, D. L.; Weiss, P. S. J. Phys. Chem. B 1999, 103, 8122.   DOI   ScienceOn
21 Hatzor, A.; Weiss, P. S. Science 2001, 291, 1019.
22 Vericat, C.; Vela, M. E.; Benitez, G. A.; Martin Gago, J. A.; Torrellels, X.; Salvarezza, R. C. J. Phys: Condens. Matter. 2006, 18, R867.   DOI   ScienceOn
23 Allara, D. L. Biosens. Bioelectron. 1995, 10, 771.   DOI   ScienceOn
24 Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550.   DOI   ScienceOn
25 Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1.   DOI   ScienceOn
26 Kumar, A.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1498.   DOI
27 Mallouk, T. E.; Harrison, D. J. Interfacial Design and Chemical Sensing; American Chemical Society: Washington, DC, 1994.
28 Haussling, L.; Knoll, W.; Ringsdorf, H.; Schmitt, F. J.; Yang, J. L. Makromol. Chem., Macromol. Symp. 1991, 46, 145.   DOI
29 Allara, D. L.; Dunbar, T. D.; Weiss, P. S.; Bumm, L. A.; Cygan, M. T.; Tour, J. M.; Reinerth, W. A.; Yao, Y.; Kozaki, M.; Jones, L., II. Ann. N. Y. Acad. Sci. 1998, 852, 349.   DOI
30 Zamborini, F. P.; Crook, R. M. Langmuir 1998, 14, 3279.   DOI   ScienceOn
31 Haussling, L.; Ringsdorf, H.; Schmitt, F. J.; Knoll, W. Langmuir 1991, 7, 1837.   DOI
32 Houseman, B. T.; Huh, J. H.; Kron, S. J.; Mrksich, M. Nat. Biotechnol. 2002, 20, 270.   DOI   ScienceOn