• 제목/요약/키워드: 1-D thermal model

검색결과 264건 처리시간 0.022초

A 1D model considering the combined effect of strain-rate and temperature for soft soil

  • Zhu, Qi-Yin;Jin, Yin-Fu;Shang, Xiang-Yu;Chen, Tuo
    • Geomechanics and Engineering
    • /
    • 제18권2호
    • /
    • pp.133-140
    • /
    • 2019
  • Strain-rate and temperature have significant effects on the one-dimensional (1D) compression behavior of soils. This paper focuses on the bonding degradation effect of soil structure on the time and temperature dependent behavior of soft structured clay. The strain-rate and temperature dependency of preconsolidation pressure are investigated in double logarithm plane and a thermal viscoplastic model considering the combined effect of strain-rate and temperature is developed to describe the mechanical behavior of unstructured clay. By incorporating the bonding degradation, the model is extended that can be suitable for structured clay. The extended model is used to simulate CRS (Constant Rate of Strain) tests conducted on structural Berthierville clay with different strain-rates and temperatures. The comparisons between predicted and experimental results show that the extended model can reasonably describe the effect of bonding degradation on the stain-rate and temperature dependent behavior of soft structural clay under 1D condition. Although the model is proposed for 1D analysis, it can be a good base for developing a more general 3D model.

4D Lookup Table Interpolating을 이용한 단위 전지 방전 시험 기반 열전지 성능 예측 (Performance Estimation Based on 4D Lookup Table Interpolating and Unit Cell Discharge Tests for Thermal Battery)

  • 박병준;김지연;하상현;조장현
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.393-400
    • /
    • 2017
  • For comparison to the Li-ion battery, evaluating a thermal battery must consider additional variables. The first one is the temperature difference between the battery and its unit cell. Thermal batteries and their unit cells have a temperature difference that is caused by the thermal battery activation mechanism and its shape. The second variable is the electrochemical reaction steps. Most Li-ion batteries have a constant electrochemical reaction at the electrode, and battery voltage is affected when the concentration of Li ions is changed. However, a thermal battery has several steps in its electrochemical reaction, and each step has a different potential. In this study, we used unit cell discharge tests based on interpolating a 4D lookup table to estimate the performance of a thermal battery. From the test results, we derived an estimation algorithm by interpolating the table, which is queried from specified profile groups. As a result, we found less than a 5 percent difference between estimation and experiment at the 1.3 V cut-off time.

등가 열회로를 이용한 물체의 적외선 특성 모델링 (IR signature modeling using an equivalent thermal circuit)

  • 홍현기;한성현;홍경표;최종수
    • 전자공학회논문지S
    • /
    • 제35S권1호
    • /
    • pp.122-129
    • /
    • 1998
  • For generation and analysis of the multi-sensory image, we propose a new three dimensional (3D) modeling method considering an iternal heat source. We represent the heat conduction process within th object as an equivalent thermal circuit. Therefore, without a complex computation, our modeling approach can obtain thermal features of the object. By using the faceted model, the proposed method can express the accurate visual signatures of the object. Comparing the estimates datum with the obtained surface temperatures, we have demonstrated that the proposed method can provide a precise thermal features. The thermal images by out model is applicable to simulate a tracking loop of an IR missile.

  • PDF

3차원 ELCOM 모형을 이용한 대청호 수온성층 모의 (Simulations of Thermal Stratification of Daecheong Reservoir using Three-dimensional ELCOM Model)

  • 정세웅;이흥수;최정규;류인구
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.922-934
    • /
    • 2009
  • The transport of contaminants and spatial variation in a deep reservoir are certainly governed by the thermal structure of the reservoir. There has been continuous efforts to utilize three-dimensional (3D) hydrodynamic and water quality models for supporting reservoir management, but the efforts to validate the models performance using extensive field data were rare. The study was aimed to evaluate a 3D hydrodynamic model, ELCOM, in Daecheong Reservoir for simulating heat fluxes and stratification processes under hydrological years of 2001, 2006, 2008, and to assess the impact of internal wave on the reservoir mixing. The model showed satisfactory performance in simulating the water temperature profiles: the absolute mean errors at R3 (Hoenam) and R4 (Dam) sites were in the range of $1.38{\sim}1.682^{\circ}C$. The evaporative and sensible heat losses through the reservoir surface were maximum during August and January, respectively. The net heat flux ($H_n$) was positive from February to September, while the stratification formed from May and continued until September. Instant vertical mixing was observed in the reservoir during strong wind events at R4, and the model reasonably reproduced the mixing events. A digital low-pass filter and zero crossing method was used to evaluate the potential impact of wind-driven internal wave on the reservoir mixing. The results indicated that most of the wind events occurred in 2001, 2006, 2008 were not enough to develop persistent internal wave and effective mixing in the reservoir. ELCOM is a suitable 3D model for supporting water quality management of the deep and stratified reservoirs.

멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발 (Development of Gas Type Identification Deep-learning Model through Multimodal Method)

  • 안서희;김경영;김동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.525-534
    • /
    • 2023
  • 가스 누출 감지 시스템은 가스의 폭발성과 독성으로 인한 인명 피해를 최소화할 핵심적인 장치이다. 누출 감지 시스템은 대부분 단일 센서를 활용한 방식으로, 가스 센서나 열화상 카메라를 통한 검출 방식으로 진행되고 있다. 이러한 단일 센서 활용의 가스 누출감지 시스템 성능을 고도화하기 위하여, 본 연구에서는 가스 센서와 열화상 이미지 데이터에 멀티모달형 딥러닝을 적용한 연구를 소개한다. 멀티모달 공인 데이터셋인 MultimodalGasData를 통해 기존 논문과의 성능을 비교하였고, 가스 센서와 열화상 카메라의 단일모달 모델을 기반하여 네 가지 멀티모달 모델을 설계 및 학습하였다. 이를 통해 가스 센서와 열화상 카메라는 각각 1D CNN, GasNet 모델이 96.3%와 96.4%의 가장 높은 성능을 보였다. 앞선 두 단일모달 모델을 기반한 Early Fusion 형식의 멀티모달 모델 성능은 99.3%로 가장 높았으며, 또한 기존 논문의 멀티모달 모델 대비 3.3% 높았다. 본 연구의 높은 신뢰성을 갖춘 가스 누출 감지 시스템을 통해 가스 누출로 인한 추가적인 피해가 최소화되길 기대한다.

건물(建物) 외벽(外壁)의 전열특성(傳熱特性) 평가(評價)에 관한 실측(實測) 연구(硏究) - 단열재 위치에 따른 실험용 건물의 겨울철 열특성 평가를 중심으로 - (Experimental Study on the Evaluation of Heat Transfer Characteristics of Buildings' External Walls -Focusing on the winter heat transfer characteristics of four experimental model buildings in accordance with the location of insulation-)

  • 손장열;윤동원;박재형
    • 설비공학논문집
    • /
    • 제1권3호
    • /
    • pp.228-234
    • /
    • 1989
  • This paper describes the experimental thermal performance results of four experimental model buildings insulated differently. For the purpose of examining the thermal characteristics of external walls and indoor thermal conditions, four experimental model buildings are constructed as externally insulated, internally insulated, non-insulated &light-weight curtain wall types with different K-values and heat capacities, respectively.
    Through the measurements of temperatures at various points and solar insolation, the effects of insulation and heat capacities are evaluated, and the evaluated effects of each experimental model buildings are compared. Hence, the characteristics of temperature profiles, time-lag effects and decrement factors are discovered.

  • PDF

온배수 방류시스템에 관한 기초적 연구 (A Study on the Discharge System of Thermal Waste Water)

  • 곽기수;전용호;김헌태;류청로;이경선
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.87-94
    • /
    • 2007
  • This study used POM (Princeton ocean model) improved for applying to coastal area in order to predict the distribution of thermal waste water. This model was applied to the coastal circulation and the effect of thermal waste water of Cheonsu-Bay. So this study compared the discharge of thermal waste water with each layer and section. The tidal current was about 1.5 m/sec at surface level and 0.9 m/sec on bottom level at flood tide; tidal current was about 1.3 m/sec on surface level and 0.8 m/sec on bottom level at ebb tide. The method discharging the thermal waste water in the nearshore region (case 1) accelerates the diffusion of the thermal waste water in the north-south direction(longshore direction). However, the method discharge the thermal waster water in the offshore region (case 2) reduced the diffusion of the thermal waste water over the coastal region. According th the diffusion region of the thermal waste water with case 1 and case 2 at three different layers (surface, middle, bottom), the diffusion region by case 1 discharge method generally influenced wider region (twice) than the one by case 2 discharge method with lower temperature between $1^{\circ}C\;and\;2^{\circ}C$, whereas the case 2 discharge method influenced the deeper region (middle and botton layers) with higher change of the water temperature ($1{\sim}3^{\circ}C$).

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • 수산해양기술연구
    • /
    • 제47권1호
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

열유동 해석을 이용한 컴퓨터 구조의 소형화 설계 (Optimal Miniaturization of Desk-Top Computer by Thermal Design)

  • 박성관
    • 한국CDE학회논문집
    • /
    • 제4권4호
    • /
    • pp.318-326
    • /
    • 1999
  • Recently, electronic systems including computers have been rapidly shrinking in size while at the same time the complexity and the capability of these systems continue to grow/sup [1]/. Thus, system volumes have decreased as system power has increased, resulting in dramatic increases in system heat density. The high temperature of the computer system is considered as the major reason for low performance and shortening life of the product. It is necessary to solve this problem due to the heat density increased and to develop the design skill of the computer cabinet according to miniaturization. M4500 desk-top computer was selected for analyzing the thermal management inside cabinet. The cabinet volume, the configuration of the heating devices, the size and location of air ventilation, and the fan selection have been investigated as the important parameters to find out an optimal cabinet design. The objectives of this project were to analyze which design parameters would affect cooling performance by thermal strategy, to design an optimal model, and to measure the temperatures of the main parts to confirm the effect of the thermal design. The temperatures of each part of the optimal model were compared with those of the existing model. As a result. the volume of this miniaturized model was about 16% smaller than that of M4500 without any change in operating performance.

  • PDF

열적 비평형 전자분포를 갖는 아르곤 플라즈마의 두 전자그룹의 상대적인 기여도에 대한 연구 (Research on the Relative Contribution of Two Electron Groups of Ar plasma with Non-thermal Equilibrium Electron Distribution)

  • 이영석;이장재;김시준;유신재
    • 반도체디스플레이기술학회지
    • /
    • 제17권1호
    • /
    • pp.76-83
    • /
    • 2018
  • The electron energy probability function (EEPF) is of significant importance since the plasma chemistry such as the rate of ionization is determined by the electron energy distribution function. It is usually assumed to be Maxwell distribution for 0-D global model. Meanwhile, it has been observed experimentally that the form of EEPF of Ar plasma changes from being two-temperature to Druyvesteyn like as the gas pressure increases. Thus, to apply the 0-D global model of Maxwellian distribution to the non-Maxwellian plasma, we investigated the relative contribution of two distinct electrons with different temperatures. The contributions of cold/hot electrons to the equilibrium state of the plasma have attracted interest and been researched. The contributions to the power and particle balance of cold/hot electrons were studied by comparing the result of the global model considering all combinations of electron temperatures with that of 1-D Particle-in-Cell and Monte Carlo collision (PIC-MCC) simulation and the results of studies were analyzed physically. Furthermore, comparisons term by term for variations of the contribution of cold/hot electrons at different driving currents are presented.