• Title/Summary/Keyword: 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzenes

Search Result 3, Processing Time 0.168 seconds

Understanding the Protox Inhibition Activity of Novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene Derivatives Using Holographic Quantitative Structure-Activity Relationship (HQSAR) Methodology (홀로그램(H) QSAR 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene 유도체들의 Protox 저해 활성에 관한 이해)

  • Song, Jong-Hwan;Park, Kyeng-Yong;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.351-356
    • /
    • 2004
  • Holographic quantitative structure activity relationships (HQSAR) as 2D QSAR between the herbicidal activities against root and shoot of rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli), and structures of A=3,4,5,6-tetra-hydrophthalimino, B = 3-chloro-4,5,6,7-tetrahydro-2H-indazolyl and C = 3,4-dimethylmaleimino substituents in 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives were studied and discussed. The statistical results of four HQSAR models for the herbicidal activities against root and shoot of the two plants showed the best predictability of the herbicidal activities based on the cross-validated $r^2\;_{cv}\;(q^2=\;0.760{\sim}0.924)$, non cross-validated conventional coefficient $(r^2\;_{ncv}\;=\;0.868{\sim}0.970)$ and PRESS values $(0.123{\sim}0.261)$. The results indicated that the qualities of HQSAR models for barnyardgrass were slightly higher than that of rice plant. And also, the predictability of HQSAR models were higher $(q^2\;=\;HQSAR\;>\;CoMFA)$ than CoMFA but the conventional coefficients of HQSAR models lower $(r^2\;=\;HQSAR\;<\;CoMFA)$ than CoMFA. Moreover, from the contribution maps, it was founded that the selectivity between the two plants depends upon the 2-fluoro-4-chloro-5-alkoxyanilino and $R_3$ substituent on the C-phenyl ring. These features suggest where to modify a molecular structure in order to improve its selective of herbicidal activities against barnyardgrass.

Understanding the Protox Inhibition Activity of Novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene Derivatives Using Comparative Molecular Similarity Indices Analysis (CoMSIA) Methodology (비교 분자 유사성 지수분석(CoMSIA) 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chlore-4-fluorobenzene 유도체들의 Protox 저해 활성에 관한 이해)

  • Song, Jong-Hwan;Park, Kyung-Yong;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.414-421
    • /
    • 2004
  • 3D QSAR studies for protox inhibition activities against root and shoot of the rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives were conducted based on the results (Sung, N. D. et al.'s, (2004) J. Korean Soc. Appl. Biol. Chem. 47(3), 351-356) using comparative molecular similarity indices analysis (CoMSIA) methodology. Four CoMSIA models, without hydrogen bond donor field for the protox inhibition activities against root and shoot of the two plants, were derived from the combination of several fields using steric field, hydrophobic field, hydrogen bond acceptor field, LUMO molecular orbital field, dipole moment (DM) and molar refractivity (MR) as additional descriptors. The predictabilities and fitness of CoMSIA models for protox inhibition activities against barnyard-grass were higher than that of rice plant. The statistical results of these models showed the best predictability of the protox inhibition activities against barnyard-grass based on the cross-validated value $r^2\;_{cv}\;(q^2=0.635{\sim}0.924)$, non cross-validated, conventional coefficient $r^2\;_{ncv.}$ value $(r^2=0.928{\sim}0.977)$ and PRESS value $(0.255{\sim}0.273)$. The protox inhibition activities exhibited a strong correlation with the steric $(5.4{\sim}15.7%)$ and hydrophobic $(68.0{\sim}84.3%)$ factors of the molecules. Particularly, the CoMSIA models indicated that the groups of increasing steric bulk at ortho-position on the C-phenyl ring will enhance the protox inhibition activities against barnyard-grass and subsequently increase the selectivity.

Understanding the protox inhibition activity of novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives using comparative molecular field analysis (CoMFA) methodology (비교 분자장 분석 (CoMFA) 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluoro-benzene 유도체들의 Protox 저해 활성에 관한 이해)

  • Sung, Nack-Do;Song, Jong-Hwan;Yang, Sook-Young;Park, Kyeng-Yong
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.3
    • /
    • pp.151-161
    • /
    • 2004
  • Three dimensional quantitative structure-activity relationships (3D-QSAR) studies for the protox inhibition activities against root and shoot of rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new A=3,4,5,6-tetrahydrophthalimino, B=3-chloro-4,5,6,7-tetrahydro-2H-indazolyl and C=3,4-dimethylmaleimino group, and R-group substituted on the phenyl ring in 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2chloro-4-fluorobenzene derivatives were performed using comparative molecular field analyses (CoMFA) methodology with Gasteiger-Huckel charge. Four CoMFA models for the protox inhibition activities against root and shoot of the two plants were generated using 46 molecules as training set and the predictive ability of the each models was evaluated against a test set of 8 molecules. And the statistical results of these models with combination (SIH) of standard field, indicator field and H-bond field showed the best predictability of the protox inhibition activities based on the cross-validated value $r^2_{cv.}$ $(q^2=0.635\sim0.924)$, conventional coefficient $(r^2_{ncv.}=0.928\sim0.977)$ and PRESS value $(0.091\sim0.156)$, respectively. The activities exhibited a strong correlation with steric $(74.3\sim87.4%)$, electrostatic $(10.10\sim18.5%)$ and hydrophobic $(1.10\sim8.30%)$ factors of the molecules. The steric feature of molecule may be an important factor for the activities. We founded that an novel selective and higher protox inhibitors between the two plants may be designed by modification of X-subsitutents for barnyardgrass based upon the results obtained from CoMFA analyses.