• Title/Summary/Keyword: 1 ppm

Search Result 6,051, Processing Time 0.039 seconds

Variations of The Heavy Metal Contents in Human Hairs According to of Hair Coloring Manipulation (모발(毛髮)의 염색처리(染色處理)에 따른 중금속(重金屬) 함량(含量)의 변화(變化))

  • Joung, Yeon;Sung, Su-Kwang
    • Journal of Fashion Business
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • The purpose of this study was to suggest the knowlege and scientific information of the damage according to the heavy metal exposure level of hair coloring manipulations. The study was investigated variations of the heavy metal contents(Pb, Zn, Cu, Mn, Fe, Ni) in hairdye and human hairs by 1 and 2 times of hair coloring manipulations. The results were as follows; 1. Mean heavy metal contents in colorant of hairdye were 0.250ppm(Pb), 33.650ppm(Zn), 0.800ppm(Cu), 0.675ppm(Mn), 31.050ppm(Fe), 1.700ppm(Ni). In oxidant of hairdye, It were 0.225ppm(Pb), 35.450ppm(Zn), 0.575ppm(Cu), 0.075ppm(Mn), 16.600ppm(Fe), 1.500ppm(Ni). 2. Mean heavy metal contents were 2.950ppm(Pb), 29.000ppm(Zn), 9.400ppm(Cu), 1.075ppm(Mn), 40.775ppm(Fe), 1.950ppm(Ni) in virgin hairs, 3.025ppm(Pb), 40.250ppm(Zn), 9.650ppm(Cu), 1.350ppm(Mn), 42.900ppm(Fe), 2.200ppm(Ni) in 1 time of coloring hairs, 3.350ppm(Pb), 51.650ppm(Zn), 10.950ppm(Cu), 1.475ppm(Mn), 44.350ppm(Fe), 2.225ppm(Ni) in 2 times of coloring hairs.

  • PDF

The Content of Minerals in Algae (해조류(海藻類)의 무기성분(無機成分))

  • Lee, Jong-Ho;Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.9 no.1
    • /
    • pp.51-58
    • /
    • 1980
  • Sixteen species of algae (4 species of green algae, 5 species of brown algae and 7 species of red algae) were collected from the coast of Chungmu, Gyeongnam, from June to October, 1976. The content of minerals in algae were analyzed by Atometic Absorption Spectrophotometer. The results were as followed 1) The content of Iron and Nickel in green algae were abundant, and those of Lead, Nickel and Manganese in brown algae were low. 2) The content of Cadmium were in the range of 0.58-1.04ppm (average: 0.85ppm) in green algae, 0.32-2.10ppm (average: 1.08ppm) in brown algae and 0.54-1.70ppm (average: 1.04ppm) in red algae. The content of Cadmium were in the range of 0.3-0.6ppm in laver, Porphyra tenera, sea mustard, Undaria pinnatifida, and tangle, Laminaria japonica, but its content was lower than those expected. 3) The content of Lead were in the range of 0.67-1.40ppm (average: 1.03ppm) in green algae, 0.60-1.00ppm (average: 0.82ppm) in brown algae, 0.56-2.40ppm (average: 1.28ppm) in red algae and its content in algae were lower than in fish and shellfish. 4) The content of Copper were in the range of 10.8-24.2ppm (average: 18.95ppm) in green algae, 7.4-24.6ppm (average: 18.16ppm) in brown algae, 6.4-31.2ppm (average: 19.94ppm) in red algae and those content were considerably abundant except for some algae. 5) The content of Nickel were in the range of 5.4-16.6ppm (average: 9.1ppm) in green algae, 1.0-4.4ppm (average: 2.32ppm) in brown algae and 0.7-4.6ppm (average: 2.59ppm) in red algae. 6) The content of Iron were in the range of 686.4-1159.0ppm (average: 916.5ppm) in green algae, 131.0-499.2ppm (average: 310.16ppm) in brown algae and 156.0-530.4ppm (average: 248.2ppm) in red algae. Especially, that of Iron in green algae showed higher value than in any other. 7) The content of Manganese were in the range of 48-221ppm (average: 157.25ppm) in green algae, 12-65ppm (average: 41ppm) in brown algae and 72-162ppm (average: 121ppm) in red algae. Especially, that of Manganese in brown algae showed lower value than in any other. 8) The content of Zinc were in the range of 191.3-451.1ppm (average: 290.05ppm) in green algae, 89.9-374.2ppm (average: 202.64ppm) in brown algae and 106.4-281.4ppm (average: 188.93ppm) in red algae. 9) The content of Magnesium were in the range of 0.48-1.83% (average: 1.27%) in green algae, 1.04-1.71% (average: 1.21%) in brown algae and 0.42-1.24% (average: 0.097%) in red algae. 10) The content of Fluorine were in the range of 29.2-92.7ppm (average: 53.03ppm) in green algae, 33.3-43.5ppm (average: 39.18ppm) in brown algae and 32.4-59.0ppm (average: 44.84ppm) in red algae.

  • PDF

Study on the Contents of Trace Elements in Foods (on the Trace Element Contents of Shellfish in Korean coastal Water) (식품중의 미량금속에 관한 연구조사 (연안 견류중의 중금속 함유량에 관하여))

  • 백덕우;권우창;원경풍;김준한;김오한;소유섭;김영주;박건상;성덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.3 no.1
    • /
    • pp.7-18
    • /
    • 1988
  • In 1987, the level of heavy metals were determined ina total of 200 samples of 9 species of shellfish of Korea. The samples were collected at the fish. markets by 10 Public Institute of Health. The samples were whelk (Buccinum striatiBBimum), oyster (Crassostrea gigas), ark shell(Tegillarca granesa), shartnecked clam (Venerupis semidecussta), hard clam (Meretrix lusoria), top shell (Turbo cornutus), abalone (Haliotis gigantea), ark shell (Scapharea broughtonii), sea-mussel (Mytilus conuscus gould), respectively. The levels of total mercury, lead, cadmium, arsenic, copper, zinc and manganese were determined. The total mercury levels were determined by mercury analyzer using the combustion gold amalgamation method. The arsenic level were determined by spectrophotometry using colorimetric sil ver diethyldithiocarbamate method after dry ash dige8tion of the samples with magnesium oxide and magnesium nitrate. The levels of other metals were determined by inductively coupled pluma spectrophotometry after wet digestion of the samples with nitric acid and su1furic acid. The results were summerized as follows; 1. The overallranges and mean(ppm) were; Hg, ND-O.221 (0.036); Pb, 0.05-1.51 (0.37); Cd, 0.02-1.86 (0.61); As, 0.5-3.97 (1.22); Cu, 0.14-54.16 (4.93); Zn, 7.40-207.17 (30.09); Mn, 0.13-s.72 (3.40). 2. The levels of all 6 metals were found to be below the maximum permissible Iimits set by the Japan lor mercury, the Netherland for lead the Hong Kong for cadmium. The Finland for Arsenic no statutory Iimits for Zn and Mn in shellfish in any countries. 3. The results show that all the 9 species of shellfish studied, none have accumulated levels dangerous enough to pose a health problem.roblem.

  • PDF

Influence of Toxic Heavy Metals on Germination of Rice Seeds and Growth of Rice Seedling (수도생육(水稻生育)에 대한 유해(有害) 중금속(重金屬)의 영향(影響) - 발아 및 묘대기(苗垈期) 생육(生育)에 대하여 -)

  • Kim, B.J.;Ha, Y.L.;Kim, J.O.;Han, K.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 1979
  • Rice seeds, suweon 264, were germinated under 5 levels of toxic heavy metals, Cd(0, 0.05, 0.5, 5, 20ppm), Cu(0, 0.05, 0.5, 5, 20, ppm), Cr(0, 0.5, 1, 5, 10ppm), Ni(0, 0.5, 1, 5, 10ppm), Co(0, 0.5, 1, 5, 10ppm), Zn(0, 0.5, 5, 20, 40, ppm), Pb(0, 0.5, 5, 20, 40ppm) and Mn(0, 1, 10, 25, 50, ppm) in culture solution, and then grown with supplying culture solution contained respective concentrations. Germination and growth response to the toxic heavy metals were studied. Results obtained are as follows : 1) The germination injury of rice seeds by excess concentration of toxic heave metal in culture solution occured in Cd and Cu; below 0.05 ppm, Ni; below 0.5 ppm, Mn; below 1.0 ppm, Co and Cr; 0.5-1.0 ppm, and 0.5-5 ppm, Zn and Pb. Thereby, in the order of degrees of the elements toxicity to germination, they were arranged as follows : Cd>Cu>Ni>Co>Cr>Mn>Zn$$\geq_-$$Pb. 2) Toxic heavy metal concentrations in culture solution, which result in decreasing dry weight due to the injury of excess concentration of treated elements, were Cd: below 0.05 ppm, Ni, Cr and Co; below 0.5 ppm, Cu and Zn; 0.5-5 ppm, Pb; 5-20 ppm and Mn; 10-25 ppm. The order was Ni>Cd>Cr>Co>Cu$$\geq_-$$Zn>Pb>Mn. 3) The critical contents of Cd, Ni, Pb, Cu, Zn, Mn, and Co in dry matter, Which result in decreasing dry weight, were considered to be 0.05-15.5, 1.50-25.0, 24.0-28.0, 26.5-62.5, 470-645.0, 231.0-500.0 and below 15.0 ppm, respectively. 4) The contents of Cr, Co, Cd, Pb, Ni, Cu and Zn in dry matter by 0.5 ppm treatment concentration of each heavy metals was trace, 15.0, 17.5, 24.0, 25.0, 84.5 and 470.0 ppm, respectively. Thereby, in the order of each element to uptaked by rice seedlings, they were arranged as follow; Zn>Cu>Ni>Pb>Cd>Co>Cr. 5) The hazardous concentrations of root activity by toxic heavy metals in culture solution were Cd; below 0.05, Cu; 0.05-0.5, Cr; below 0.5, Ni; 0.5-1.0, Co; 0.5-1.0, Zn; above 0.5, Pb; 0.5-5.0 and Mn; 1.0-10.0 ppm. The hazardous degree of root activity by toxic heave metals was in the order of Cd>Cu>Cr>Zn>Ni>Co>Pb>Mn.

  • PDF

Synthesis and Antifungal Activity of 3-Oxo-1, 2-benzisothiazole-1, 1-dioxide Derivatives (3-Oxo-1,2-benzisothiazole-1,1-dioxide유도체의 합성 및 항규성)

  • Yoon, Yong-Jin;Park, Chang-Suk;Kim, In-Kyu
    • Applied Biological Chemistry
    • /
    • v.27 no.2
    • /
    • pp.95-99
    • /
    • 1984
  • Some derivatives of 3-oxo-1,2-benzisothiazole-1,1-dioxide were synthesized, and their antifungal activities against Pyricularia oryzae was determined by the agar medium dilution method. $I_{50}$ values of the candidate derivatives were shown to be as follows; 3-chloro(37.8ppm), 2-chloro(318.7ppm), MCS(20.1ppm), 2-allyl(946.2ppm), 3-(p-nitrophenyloxy) (35.4ppm), 3-(o-nitrophenyloxy) (11.8ppm), 3-(p-aminophenyloxy) (1643.2ppm), 2-chloromethyl(192.7ppm) and 2-hydroxymethyl derivative(248.4ppm).

  • PDF

Respiration amount on the Growth Step of Pleurotus ostreatus (느타리버섯 생육단계별 호흡량)

  • Chang, Hyun-You;Baek, Seong-Ho;Seo, Geum-Hui;Lee, Jun-Ho
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • The result of respiration amount on the growth step of P. ostreatus shows as follows. On the early and middle mycelial culture step, respiration amount per minute in the 16 bottles(850cc) maintained 184.75ppm, 185.8ppm respectively. Therefore we are able to calculate how much fresh air replace in the growth chamber for optimization optimal CO2 amount. This means early respiration amount was increased than middle a little on the proceeding mycelial culture. On the early, middle, last and post harvest growth step, the respiration amount per minute in the 16 bottles (850cc) maintained 154.5ppm, 148.1ppm, 157.1ppm and 101.6ppm respectively.

Heavy Metal Contents of the Drainage-basin Soil in Daejon Area (대전지방(大田地方) 하천지역(河川地域) 경작토중(耕作土中)의 중금속함량(重金屬含量))

  • Kim, Moon-Kyu;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.2
    • /
    • pp.78-82
    • /
    • 1983
  • Some physico-chemical properties and heavy metal contents of up-land and paddy field soils on the drainage-basin of Daejeon Cheon and Yoodeung Cheon in Daejeon area were investigated. The average contents (and the range) of Pb was 6.75 ppm (2.33-11.65 ppm), Cr; 1.77 ppm (0.58-4.0 ppm), Cd; 0.7pprn (0.09-1.83 ppm), Cu; 9.96 ppm (t-19.36 ppm), and Zn; 19.99 ppm (2.38-47.9 ppm) in up-land soil, and Pb; 7.77 ppm (t-15.5 ppm), Cr; 1.91 ppm (t-9.38 ppm), Cd; 0.21 ppm(t-2.05 ppm), Cu; 11.17 ppm (t-21.96 ppm), and Zn; 18.0l ppm (1.65-40.0ppm) in paddy field soil, respectively.

  • PDF

The study of sewage sludge moisture content and composition analysis for sewage sludge dryer (하수 슬러지 건조장치 운전시 하수슬러지 함수율 및 조성 분석연구)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.53-59
    • /
    • 2014
  • In this study, the sewage sludge dryer is installed before and after dehydration of the sludge and aqueous phase composition, the heavy metal content, and measurement and analysis were investigated. The removal efficiency of water content of sewage sludge was about 95.7% in the sewage sludge dryer. The removal efficiency of water content for primary dryer was designed for 35% of primary drying, secondary drying to remove the water content to 10%, but as the measurement revealed that 20.8% of primary drying, the second dryer 3.3% a better effect to the actual operation respectively. Before the installation of the sewage sludge dryer, the content of heavy metal was as follows, Cu:352~614 ppm, Hg: 1.3~1.44ppm, Cd : 1.1~1.86ppm, Pb : 17.25~ 28.93 ppm, As : 1ppm. And after the installation of the sewage sludge dryer, the content of heavy metal changed to as follows, Cu : 340~350 ppm, Hg : 0 ppm, Cd : 0~0.021 ppm, Pb : 0 ppm, As : 0~0.043 ppm which is Also below the legal limits. Also, the sewage sludge dryer produce 1/4 of the sewage sludge into dried sludge.

The Chemical Composition of the Nagdong River Downstream Water (낙동강 하류수의 수질조성에 대하여)

  • WON Jong Hun;LEE Bae Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.47-58
    • /
    • 1981
  • Relationships between the electrical conductivity and the contents of the chloride, sulfate, calcium, magnesium, sodium, potassium and total major inorganic ions, and between each, chemical conservative constituents were calculated with the data which sampled at the lesions of Mulgeum and between Namji and Wondong from March 1974 to April 1980. Semilogarithmic relations were found between the electrical conductivity and the contents of monovalent ions, and logarithmic relations were found between the electrical conductivity and the contents of divalent ions at the both regions. The relational equations between the electrical conductivity $\lambda_{25}$and the contents of the major inorganic ions at Mulgeum are as follows: $log\;Cl(ppm)\;=\;2.37{\cdot}\lambda_{25}(m{\mho}/cm)+0.733{\pm}0.141$, $log\;SO_4(ppm)=1.12{\cdot}log\lambda_{25}(m{\mho}/cm)+2.14{\pm}0.18$, $log\;Ca(ppm)=0.615{\cdot}log\lambda_{25}(m{\mho}/cm)+1.67{\pm}0.12$, $log\;Mg(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.27{\pm}0.11$, $log\;Na(ppm)=2.82{\cdot}\lambda_{25}(m{\mho}/cm)+0.551{\pm}0.133$, $log\;K(ppm)=1.33{\cdot}\lambda_{25}(m{\mho}/cm)+0.136{\pm}0.095$, and total inorganic ions $C(ppm)=399{\cdot}\lambda_{25}(m{\mho}/cm)-0.9{\pm}14.6$. The relational equations between the electrical conductivity ($\lambda_{25}$) and the contents of the major inorganic ions at the region between Namji and Wondong a.e as follows: $log\;Cl(ppm)=4.27{\cdot}\lambda_{25}(m{\mho}/cm)+0.380{\pm}0.138$, $log\;SO_4(ppm)=0.915{\cdot}log\lambda_{25}(m{\mho}/cm)+1.95{\pm}0.18$, $log\;Ca(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.74{\pm}0.12$, $log\;Mg(ppm)=1.00{\cdot}log\lambda_{25}(m{\mho}/cm)+1.41{\pm}0.10$. $log\;Na(ppm)=2.47{\cdot}\lambda_{25}(m{\mho}/cm)+0.614{\pm}0.065$, $log\;K(ppm)=1.62{\cdot}\lambda_{25}(m{\mho}/cm)+0.030{\pm}0.060$, and total inorganic ions $C(ppm)=323{\cdot}\lambda_{25}(m{\mho}/cm)+11.7{\pm}9.3$. Logarithmic relations were found between each chemical conservative constituents at Mulgeum and the equations are as follows: $log\;Cl(ppm)=0.711{\cdot}log\;SO_4(ppm)+0.488{\pm}0.206$, $log\;Cl(ppm)=0.337{\cdot}log\;Ca(ppm)+0.822{\pm}0.130$, $log\;Cl(ppm)=0.605{\cdot}log\;Mg(ppm)-0.017{\pm}0.154$, $Cl(ppm)=0.676{\cdot}Na(ppm)+2.31{\pm}4.67$, $log\;Cl(ppm)=0.406{\cdot}log\;K(ppm)-0.092{\pm}0.112$, $log\;SO_4(ppm)=0.378{\cdot}log\;Ca(ppm)+0.721{\pm}0.125$, $log\;SO_4(ppm)=0.462{\cdot}log\;Mg(ppm)+0.107{\pm}0.118$, $log\;SO_4(ppm)=0.592{\cdot}log\;Na(ppm)+0.313{\pm}0.191$, $log\;SO_4(ppm)=0.308{\cdot}log\;K(ppm)-0.019{\pm}0.120$, $Ca(ppm)=0.262{\cdot}Mg(ppm)+0.74{\pm}1.71$. $log\;Ca(ppm)=1.10{\cdot}log\;Na(ppm)-0.243{\pm}0.239$, $Ca(ppm)=0.0737{\cdot}K(ppm)+1.26{\pm}0.73$, $log\;Mg(ppm)=0.0950{\cdot}Na(ppm)+0.587{\pm}0.159$, $log\;Mg(ppm)=0.0518{\cdot}K(ppm)+0.111{\pm}0.102$, and $Na(ppm)=0.0771{\cdot}K(ppm)+1.49{\pm}0.59$. Logarithmic relations were found between each chemical conservative constituents except a relationship between the chloride and calcium contents at the region between Namji and Wondong, and the equations are as follows : $log\;Cl(ppm)=0.312{\cdot}log\;SO_4(ppm)+0.907{\pm}0.210$, $log\;Cl(ppm)=0.458{\cdot}log\;Mg(ppm)+0.135{\pm}0.130$, $Cl(ppm)=0.484{\cdot}logNa(ppm)+0.507{\pm}0.081$, $Cl(ppm)=0.0476{\cdot}K(ppm)+1.41{\pm}0.34$, $log\;SO_4(ppm)=0.886{\cdot}log\;Ca(ppm)+0.046{\pm}0.050$, $log\;SO_4(ppm)=0.422{\cdot}log\;Mg(ppm)+0.139{\pm}0.161$, $log\;SO_4(ppm)=0.374{\cdot}log\;Na(ppm)+0.603{\pm}0.140$, $log\;SO_4(ppm)=0.245{\cdot}log\;K(ppm)+0.023{\pm}0.102$, $log\;Ca(ppm)=0.587{\cdot}log\;Mg(ppm)+0.003{\pm}0.088$, $log\;Ca(ppm)=0.892{\cdot}log\;Na(ppm)+0.028{\pm}0.109$, $log\;Ca(ppm)=0.294{\cdot}log\;K(ppm)-0.001{\pm}0.085$, $log\;Mg(ppm)=0.600{\cdot}log\;Na(ppm)+0.674{\pm}0.120$, $log\;Mg(ppm)=0.440{\cdot}log\;K(ppm)+0.038{\pm}0.081$, and $log\;Na(ppm)=0.522{\cdot}log\;K(ppm)-0.260{\pm}0.072$.

  • PDF

Histopathological effects caused by formalin bath on gill and liver of Eel (Anguilla japonica) (포르말린 약욕이 뱀장어 (Anguilla japonica)의 아가미 및 간에 미치는 병리조직학적 효과)

  • Jung, Sung-Hee;Lee, Nam-Sil;Lee, Joo-Seok;Jee, Bo-Young;Kim, Jin-Woo;Kim, Eung-Oh
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.315-325
    • /
    • 2007
  • Histological changes in gill and liver of eel, Anguilla japonica (average weight 96±3.6 g) were examined with formalin bath at 0~500 ppm for 1, 6 and 24 h. Hyperplasia, hypertrophy, cell fusion, desquamation and necrosis of epithelial cells at gill lamella and gill filament were observed from 6 h at 200 ppm, 1 h at 300 ppm, 1 h at 400 ppm and 1 h at 500 ppm. In the exposure of formalin 100 ppm for 24 h, epithelial cells arrangement of gill filament and gill lamella showed thinner and more regular order than the control. trophy and pyknosis of hepatocytes, congestion at sinus or central vein, degeneration of cytoplasm were observed in the liver from 24 h at 100 ppm and 200 ppm, 6 h at 300 ppm, 1 h at 400 ppm and 500 ppm. However, there were not any histological changes at liver of 100 ppm-1, 6 h, 200 ppm-1, 6 h and 300 ppm-1 h compared with the tissue of control.