• Title/Summary/Keyword: 1차원 불포화 지하수해석

Search Result 6, Processing Time 0.019 seconds

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 2. Rainfall Event-based Analysis (유역 내에서의 산사태에 의한 토사발생특성 분석 2. 강우사상별 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. The results of the analysis on characteristics of sediment produce according to rainfall events showed that the sediment produce by landslide was mainly contributed to rainfall intensity and its temporal clustering. The results of the analysis on characteristics of sediment produce by extreme events showed that remaining rainfall amount of typhoon 'Rusa' was much more than that of the other extreme events, and thus this remaining rainfall was to contribute to sediment transportation. Additionally, only a small number of extreme events were found to cause most amount of sediment produce in a basin.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 1. Simulation of Sediment Produce and its Verification (유역 내에서의 산사태에 의한 토사발생특성 분석 1. 토사발생모의 및 검증)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Kim, Seong-Joon;Lee, Mi-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.133-145
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. As the results considering on recovery of the failed slopes, much amount of sediment was produced in 1963, 1970, and 2002. As the results of verification of simulation results using Landsat 5 TM images, we can find differences of landslide location between the results from model and satellite images. These differences can be caused by uncertainties of the rough parameters in the model. However, in the case that Obong-dam basin was divided into two subbasin, Wangsan-chun and Doma-chun basin, the results of each subbasin show errors around 20%. And only 4% of error occurred in the case of comparing landslide area on the entire Obong-dam basin. These errors seem insignificant considering on the errors which can be caused from the analyses in this study such as estimation of sediment produce, soil cover classification, and estimation of landslide area.

Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation (지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In recent years, ground subsidence has been frequently occurred by underground cavities due to the excessive groundwater inflow, caused by poor construction and management, during tunnel excavation and underground structure construction. In this study, a numerical model (SEEFLOW3D) was developed to estimate groundwater fluctuations for saturated-unsaturated poros media, evaluates the impact on ground excavation with open cut and non-open cut scenarios. In addition, the visual MODFLOW was applied to demonstrate the verification of the model compared with both results. Our results indicated that the RMSE and NRMSE was obtained to range over -3.95~5.7% and 0.56~4.62%, respectively. The developed model was expected to estimate groundwater discharges and apply analysis tool for optimum design of waterproof wall in future.

Use of a Solution-Adaptive Grid (SAG) Method for the Solution of the Unsaturated Flow Equation (불포화 유동 방정식의 해를 위한 해적응격자법의 이용 연구)

  • Koo, Min-Ho
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.23-32
    • /
    • 1999
  • A new numerical method using solution-adaptive grids (SAG) is developed to solve the Richards' equation (RE) for unsaturated flow in porous media. Using a grid generation technique, the SAG method automatically redistributes a fixed number of grid points during the flow process, so that more grid points are clustered in regions of large solution gradients. The method uses the coordinate transformation technique to employ a new transformed RE, which is solved with the standard finite difference method. The movement of grid points is incorporated into the transformed RE, and therefore all computation is performed on fixed grid points of the transformed domain without using any interpolation techniques. Thus, numerical difficulties arising from the movement of the wetting front during the infiltration process have been substantially overcome by the new method. Numerical experiments for an one-dimensional infiltration problem are presented to compare the SAG method to the modified Picard method using a fixed grid. Results show that accuracy of a SAG solution using 41 nodes is comparable with the solution of the fixed grid method using 201 nodes, while it requires only 50% of the CPU time. The global mass balance and the convergence of SAG solutions are strongly affected by the time step size (Δt) and the weighting parameter (${\gamma}$) used for generating solution-adaptive grids. Thus, the method requires automated readjustment of Δt and ${\gamma}$ to yield mass-conservative and convergent solutions, although it may increase computational costs. The method can be effective especially for simulating unsaturated flow and other transport problems involving the propagation of a sharp-front.

  • PDF

Numerical Analysis of the Change in Groundwater System with Tunnel Excavation in Discontinuous Rock Mass (불연속 암반에서의 터널굴착에 따른 지하수체계 변화에 대한 수치해석적 연구)

  • Park, Jung-Wook;Son, Bong-Ki;Lee, Chung-In;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.44-57
    • /
    • 2008
  • In this study, a 2D finite-element analysis, using the SEEP/W program, was carried out to estimate the amount of groundwater flawing into a tunnel, as well as the groundwater tables around wetland areas during and after a tunnel excavation through rock mass. Four sites along the Wonhyo-tunnel in Cheonseong Mountain (Gyeongnam, Korea) were analysed, where the model damain of the tunnel included both wetland and fault zone. The anisotropy of the hydraulic conductivities of the rock mass was calculated using the DFN model, and then used as an input parameter for the cantinuum model. Parametric study on the influencing factors was perofrmed to minimize uncertainties in the hydraulic properties. Moreover, the volumetric water content and hydraulic conductivity functions were applied ta the model to reflect the ability of a medium ta store and transport water under both saturated and unsaturated conditions. The conductivity of fault zone was assumed ta be $10^{-5}m/sec\;or\;10^{-6}m/sec$ and the conductivity of grouting zone was assumed as 1/10, 1/50 or 1/100 of the conductivity of rock mass. Totally $6{\sim}8$ cases of transient flow simulation were peformed at each site. The hydraulic conductivities of fault zone showed a significant influence on groundwater inflow when the fault zone crossed the tunnel. Also, groundwater table around wetland maintained in case that the hydraulic conductivity of grouting zone was reduced ta be less than 1/50 of the hydraulic conductivity of rock mass.