• 제목/요약/키워드: 1차원 나노튜브 구조물

검색결과 4건 처리시간 0.019초

산화물 나노튜브 구조체 제작 방법 및 그 응용 (Nanotubular Structures of Oxides and Their Applications)

  • 유현준;배창득;김현철;윤영진;김명준;신현정
    • 한국진공학회지
    • /
    • 제19권2호
    • /
    • pp.105-113
    • /
    • 2010
  • 일차원 나노튜브는 구조는 높은 비표면적, 내부의 빈 공간 및 특유의 물리적 특징을 제공한다. 1차원 산화물 나노튜브 구조물의 합성 방법에 따라 나누어 정리하여 논의하였다. 나노 기판을 이용한 나노튜브 합성은 고른 물리적 구조를 가지는 나노튜브를 대량으로 합성하는데 있어서 이상적인 방법으로서 기판의 형태를 상대적으로 용의하게 조절함으로써 1차원 나노튜브 구조물의 특성을 극대화하였다. 극대화된 특성을 이용한 여러 응용 분야에 대한 연구를 정리하여 제시하였다.

탄소나노플레이트 지지체를 이용한 3차원 구조 탄소나노튜브/탄소나노플레이트 혼성체 합성법

  • 신권우;박지선;김윤진
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.232.1-232.1
    • /
    • 2015
  • 흑연 박리를 통해 형성된 탄소나노플레이트를 탄소나노튜브 합성을 위한 지지체로 적용하여 탄소나노플레이트 위에 직접 탄소나노튜브를 합성함으로써 3차원 구조의 탄소나노튜브/탄소나노플레이트 나노혼성체를 합성하였음. 흑연의 박리를 통해 탄소나노플레이트를 제조하기 위해서 층간화합물 삽입과 열처리를 통해 팽창흑연을 제조하고, 물리적 분쇄 과정과 액상 고압균질기 방법을 통해 두께 30nm 이하, 수 마이크론 크기의 탄소나노플레이트를 제조하고 동결건조 방법으로 탄소나노플레이트를 제조하였음. 제조된 탄소나노플레이트 상에 탄소나노튜브 합성을 위해서 탄소나노플레이트 표면처리 공정을 적용하였는데, 표면처리 방법 및 물질에 따라 금속 촉매의 담지량 및 담지 형상이 결정되어 합성되어지는 탄소나노튜브의 합성 수율과 합성된 탄소나노튜브의 형성이 다르게 나타났다. 표면처리 방법으로는 산처리방법, 흡착성 고분자 처리법, 무전해 도금법, 무기산화물 처리법이 적용되었다. 또한 담지되는 촉매 종류 및 함량, 조촉매 적용에 따라 탄소나노튜브 합성 거동을 분석하여 최적 촉매시스템을 구축하여 촉매담지체 질량 대비 700% 이상의 고수율의 탄소나노튜브/탄소나노플레이트 혼성체 합성법을 개발하였다.

  • PDF

그래핀-탄소나노튜브 혼성 나노구조 합성

  • 정상희;송우석;이수일;김유석;차명준;김성환;조주미;정민욱;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.613-613
    • /
    • 2013
  • 그래핀은 저차원계 구조에서 기인하는 뛰어난 전기적, 물리적, 기계적 성질을 지니고 있어 실리콘 기반 기술을 대체할 전계 효과 트랜지스터 이외에도 투명전극, 초고용량 커패시터, 전계방출 디스플레이 등 다양한 응용분야에 적용 가능하다. 최근에는 이러한 응용 연구분야에서 그래핀과 탄소나노튜브 각각의 단점을 최소화하고 장점을 극대화하기 위한 그래핀-탄소나노튜브 혼성 나노구조에 대한 연구들이 진행되고 있는 추세이다. 이전 연구들에서 환원된 그래핀 산화물(Reduced Graphene Oxide, RGO)을 이용한 그래핀-탄소나노튜브 혼성 나노구조가 제작되었는데, 이는 RGO의 제작과정에서 복잡한 공정과 긴 합성과정이 요구될 뿐 아니라, 복합 물질에서 탄소나노튜브의 밀도 제어가 어렵다는 단점을 지닌다. 또한 현재까지 제작된 그래핀-탄소나노튜브 혼성 나노구조의 경우, 열 화학기상증착법으로 합성된 다층(few-layers)의 그래핀과 탄소나노튜브 혼성 나노구조를 제작하였다 [1-6]. 본 연구에서는 우수한 전기적 특성을 가진 단층(monolayer)의 그래핀을 열 화학기상증착법으로 합성한 후, 그래핀 위에 단일벽 탄소나노튜브를 성장시킴으로써 그래핀-탄소나노튜브 혼성 나노구조를 제작하였다. 합성된 그래핀-탄소나노튜브의 구조적 특징은 주사 전자 현미경과 라만 분광기 측정을 통해 확인하였고, 촉매의 표면 형상 및 화학적 상태는 원자힘 현미경과 X선 광전자 분광법을 통해 확인하였다. 또한 그래핀 기반의 전계 효과 트랜지스터의 경우, 상온에서 그래핀은 우수한 전하 이동도를 가지며 웨이퍼 스케일에서 제작하기 쉬우나 밴드 갭이 없으므로 높은 Ion/Ioff를 가지는 그래핀 기반의 트랜지스터를 만드는 것이 과제이다. 반면 탄소나노튜브는 큰 에너지 갭을 가지고 있으므로 높은 Ion/Ioff를 구현하는 소자 제작이 가능하다. 그리하여 제작된 그래핀-탄소나노튜브 혼성 나노구조의 소자 제작을 통해 전기적 특성을 조사하였다.

  • PDF

원자층증착법으로 형성된 셀형성을 이용한 나노선/나노섬유 화학센서의 감응성 향상 (Improvement of Sensing Properties in Nanowires/Nanofibers by Forming Shells Using Atomic Layer Deposition)

  • 김재훈;박유정;김진영;김상섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.96-96
    • /
    • 2016
  • 나노섬유(nanofiber), 나노선(nanowire), 그리고 나노튜브(nanotube)와 같은 1차원 구조의(one-dimensional structure) 나노재료는 벌크(bulk) 및 박막(film) 재료와는 다르게 물리적, 화학적으로 특이한 성질을 가지고 있으며, 이러한 성질은 나노재료의 구조, 형상, 크기 등에 큰 영향을 받는다. 첫 째, 전기방사(electrospinning) 공정을 이용한 나노섬유의 합성; 용액의 특성, 전기장 세기, 방사시간 등의 변수를 조절하게 되면 방출되는 재료의 형상을 입자 혹은 섬유상의 형태로 얻을 수 있으며, 전기방사를 통해 합성된 나노재료의 소결 온도 및 시간을 달리함으로써 나노입자의 크기를 조절할 수 있다. 또한, 템플레이트 합성법(template synthesis) 및 이중노즐(coaxial nozzle)을 이용해 속이 빈 형태인 중공(hollow) 구조의 나노섬유를 얻을 수 있으며, 전기방사에 사용되는 전구물질에 원하는 금속 및 산화물을 첨가함으로써 복합체(composite) 나노섬유를 얻을 수 있다. 둘 째, VLS(Vapor-Liquid-Solid) 공정을 이용한 나노선의 성장; 온도, 압력, 전구물질의 양, 그리고 시간 등의 변수를 조절하게 되면 원하는 직경 및 길이를 갖는 나노선을 성장시킬 수 있다. 그리고 ALD(Atomic Layer Deposition)를 이용해 나노선에 추가적인 층을 형성함으로써 코어-셀 구조를 형성할 수 있으며, 감마선, UV와 같은 공정을 이용해 귀금속 촉매를 나노선에 기능화 시킬 수도 있다. 코어-셀 구조를 갖는 나노선/나노섬유는 코어 혹은 셀 층의 전자나 홀의 이동을 유발하여 전자공핍층(electron depletion layer) 또는 정공축적층(hole accumulation layer)을 확대 및 축소시켜 센서의 초기저항을 증가시키거나 감소시키는 역할로써 이용되고 있으며, 특히, 셀 층의 두께가 셀 층 재료의 Debye length와 유사한 크기를 갖게 되면, 셀 층은 완전공핍층(fully depleted layer)을 형성해 최대의 감도를 나타낼 수 있다. 본 연구에서는 다양한 제조 공정을 통해 제작될 수 있는 1차원 나노-구조물을 가스센서에 적용하는 사례들을 소개하고, 이러한 가스센서의 감응성능을 향상시키기 위한 방법의 한 가지로 원자층증착법으로 나노선/나노섬유의 표면에 셀층을 형성하여 감응성 향상 메커니즘 및 관련 주요 변수들을 조사하고자 한다.

  • PDF