Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.2.105

Nanotubular Structures of Oxides and Their Applications  

Yoo, Hyun-Jun (Department of Materials Science and Engineering, Kookmin University)
Bae, Chang-Deuck (Department of Materials Science and Engineering, Yonsei University)
Kim, Hyun-Chul (Department of Materials Science and Engineering, Kookmin University)
Yoon, Young-Jin (Department of Materials Science and Engineering, Kookmin University)
Kim, Myung-Jun (Department of Materials Science and Engineering, Kookmin University)
Shin, Hyun-Jung (Department of Materials Science and Engineering, Kookmin University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.2, 2010 , pp. 105-113 More about this Journal
Abstract
One-dimensional nanostructures have been researched widely because of its unique physical properties such as optical, electrical, mechanical, and chemical properties in comparison with bulk structures. Especially nanotubular structures are able to provide larger surface area, capability to load purposeful materials, and unique mechanical modulus. We reviewed the oxide nanotube technology with focusing on the method of template-directed fabrication. We can easily control of physical dimensions of nanotubes by control of nanotemplate and fabrication condition. and template-directed fabrication is ideal tool to fabricate the amount of monodisperse nanotubes. They have potentials for application in solar cell, drug-delivery, Li-ion batteries and photocatalyst. We discussed these potential applications and research trends.
Keywords
Oxide nanotube; Nano template; Atomic layer deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Park, S. Kim, and Allen J. Bard, Nano Lett. 6, 24 (2006)   DOI
2 H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, J. Mater. Chem. 10, 2005 (2000)   DOI
3 B. O'Regan and M. Gratzel, Nature 353, 737 (1991).   DOI
4 P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, and A. Agostiano, Mater. Sci. Eng. C 23, 707 (2003).   DOI
5 P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, Nat. Nanotechnol 4, 292 (2009)   DOI
6 V. Zwilling, M. Aucouturier, and E. Darque-Ceretii, Electrochem. Acta. 45, 921 (1999).   DOI
7 B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, Chem. Mater. 9, 857 (1997).   DOI
8 S. Z. Chu, K. Wada, and S. Inoue, Adv. Mater. 14, 1752. (2002).   DOI
9 N. I. Kovtyukhova, T. E. Mallouk, and T. S. Mayer, Adv. Mater. 15, 780 (2003).   DOI
10 K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A Grimes, Nanotechnology 18, 065707 (2007).   DOI
11 P. Hoyer, Langmuir 12, 1411 (1996).   DOI
12 E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, Angew. Chem. 110, 2323 (1998)   DOI
13 E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, Angew. Chem. Int. Ed. 37, 2201 (1998).   DOI
14 R. Savic, L. Luo, A. Eisenberg, and D. Maysinger, Science 300, 615 (2003).   DOI   ScienceOn
15 M. S. Wendland and S. C. Zimmerman, J. Am. Chem. Soc. 121, 1389 (1999).   DOI
16 C.-C. Chen, Y.-C. Liu, C.-H. Wu, C.-C. Yeh, M.-T. Su, and Y.-C. Wu, Adv. Mater. 17, 404 (2005).   DOI
17 C. Bae, H. Kim, D. Han, H. Yoo, J. Kim, and H. Shin, Small 5, 1936 (2008).
18 K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano Lett. 7, 69 (2007).   DOI
19 C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).   DOI
20 M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Nano Lett. 9, 3844 (2009).   DOI   ScienceOn
21 H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Adv. Mater. 16, 1197 (2004).   DOI
22 S. Baral and P. Schoen, Chem. Mater. 5, 145 (1993).   DOI
23 H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, J. Mater. Chem. 9, 2971 (1999).   DOI
24 A. Fujishima and K. Honda, Nature 238, 37 (1972).   DOI
25 T. M. Allen and P. R. Cullis, Science 303, 1818 (2004).   DOI   ScienceOn
26 D. G. Shchukin and H. Möhwald, Small 3, 926 (2007).   DOI
27 B. A. Hernandez, K.-S. Chang, E. R. Fisher, P. K. Dorhout, Chem. Mater. 14, 480 (2002)   DOI
28 R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, and P. Yang, J. Am. Chem. Soc. 125, 5254 (2003).   DOI
29 J. Bao, D. Xu, Q. Zhou, Z. Xu, Y. Feng, Y. Zhou, Chem. Mater. 14, 4709 (2002).   DOI
30 R. Gasparac, P. Kohli, M. O. Mota, L. Trofin, and C. R. Martin, Nano Lett. 4, 513 (2004)   DOI
31 M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).   DOI
32 S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai, S. Shinkai, and S. Shinkai, Chem. Mater. 12, 1523 (2000).   DOI
33 T. Kasuga, M. Hiramatsu, and A. Hoson, Langmuir 14, 3160 (1998)   DOI
34 F. Caruso, Adv. Mater. 13, 11 (2001).   DOI
35 Y. Wang, S. Gao, W.-H. Ye, H. S. Yoon, and Y.-Y. Yang, Nat. Mater. 5, 791 (2006).   DOI
36 H.-T. Fang, M. Liu, D.-W. Wang, T. Sun, D.-S. Guan, F. Li, J. Zhou, T.-K. Sham, and H.-M. Cheng, Nanotechnology 20, 225701 (2009).   DOI
37 R. A. Caruso, J. H. Schattka, and A. Greiner, Adv. Mater. 13, 1577 (2001).   DOI
38 O. K. Varghese, D. Gong, M. Paulose, and K. G. Ong, Sens. & Act. B 93, 338 (2003).   DOI   ScienceOn
39 G. K. Mor, K. Chankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 6, 215 (2006).   DOI
40 K. Wang, M. Wei, M. A. Morris, H. Zhou, and J. D. Holmes Adv. Mater. 19, 3016-3020 (2007).   DOI
41 D. Li and Y. Xia, Adv. Mater. 16, 1151 (2004).   DOI
42 H. Hillebrenner, F. Buyukserin, M. Kang, M. O. Mota, J. D. Stewart, and C. R. Martin, J. Am. Chem. Soc. 128, 4236 (2006).   DOI
43 O. K. Varghese, M. Paulose, and C. A. Grimes, Nat. Nanotechnol. 4, 592 (2009).
44 A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, Nano Lett. 7, 2183 (2007).   DOI
45 S. Iijima, Nature 354, 56 (1991).   DOI
46 A. Michailowski, D. Almawlawi, G. Cheng, and M. Moskovits, Chem. Phys. Lett. 349, 1 (2001).   DOI   ScienceOn
47 M. Ferrari, Nat. Rev. Cancer 5, 161 (2005).   DOI
48 D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin, J. Am. Chem. Soc. 124, 11864 (2002).   DOI
49 M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).   DOI
50 B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, Chem. Mater. 9, 2544 (1997).   DOI
51 U. Diebold, Surf. Sci. Rep. 48, 53 (2003).   DOI
52 D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lotan, and R. Langer, Science 276, 1868 (1997).   DOI
53 M. Gratzel, Inorg. Chem. 44, 6841 (2005).   DOI
54 S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, and P. Schmuki, Nano Lett. 7, 1286 (2007).   DOI   ScienceOn
55 B. Cheng, and E. T. Samulski, J. Mater. Chem. 11, 2901 (2001).   DOI
56 A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008).   DOI