• Title/Summary/Keyword: 1계 최적화

Search Result 314, Processing Time 0.024 seconds

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.

Development and Validation of an Analytical Method for Fenpropimorph in Agricultural Products Using QuEChERS and LC-MS/MS (QuEChERS법과 LC-MS/MS를 이용한 농산물 중 Fenpropimorph 시험법 개발 및 검증)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.115-123
    • /
    • 2019
  • An analytical method was developed for the determination of fenpropimorph, a morpholine fungicide, in hulled rice, potato, soybean, mandarin and green pepper using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) sample preparation and LC-MS/MS (liquid chromatography-tandem mass spectrometry). The QuEChERS extraction was performed with acetonitrile followed by addition of anhydrous magnesium sulfate and sodium chloride. After centrifugation, d-SPE (dispersive solid phase extraction) cleanup was conducted using anhydrous magnesium sulfate, primary secondary amine sorbents and graphitized carbon black. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.0025 to 0.25 mg/kg, and their correlation coefficient ($R^2$) of five agricultural products were higher than 0.9899. The limits of detection (LOD) and quantification (LOQ) were 0.001 and 0.0025 mg/kg, respectively, and the limits of quantification for the analytical method were 0.01 mg/kg. Average recoveries spiked at three levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n=5) and were in the range of 90.9~110.5% with associated relative standard deviation values less than 5.7%. As a result of the inter-laboratory validation, the average recoveries between the two laboratories were 88.6~101.4% and the coefficient of variation was also below 15%. All optimized results were satisfied the criteria ranges requested in the Codex guidelines and Food Safety Evaluation Department guidelines. This study could serve as a reference for safety management relative to fenpropimorph residues in imported and domestic agricultural products.

Diagnostic Reference Levels for Patient Radiation Doses in Pelvis and Lumbar spine Radiography in Korea (우리나라의 골반 및 요추 엑스선검사에서의 환자선량 권고량)

  • Lee, Kwang-Yong;Lee, Byung-Young;Lee, Jung-Eun;Lee, Hyun-Koo;Jung, Seung-Hwan;Kim, Byung-Woo;Kim, Hyeog-Ju;Kim, Dong-Sup
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.401-410
    • /
    • 2009
  • Purpose : Pelvis and lumbar spine radiography, among various types of diagnostic radiography, include gonads of the human body and give patients high radiation dose. Nevertheless, diagnostic reference levels for patient radiation dose in pelvis and lumbar spine radiography has not yet been established in Korea. Therefore, the radiation dose that patients receive from pelvis and lumbar radiography is measured and the diagnostic reference level on patient radiation dose for the optimization of radiation protection of patients in pelvis and lumbar spine radiography was established. Methods : The conditions and diagnostic imaging information acquired during the time of the postero-anterior view of the pelvis and the postero-anterior and lateral view of the lumbar spine at 125 medical institutions throughout Korea are collected for analysis and the entrance surface dose received by patients is measured using a glass dosimeter. The diagnostic reference levels for patient radiation dose in pelvis and lumbar spine radiography to be recommended to the medical institutes is arranged by establishing the dose from the patient radiation dose that corresponds to the 3rd quartile values as the appropriate diagnostic reference level for patient radiation dose. Results : According to the results of the assessment of diagnostic imaging information acquired from pelvis and lumbar spine radiography and the measurement of patient entrance surface dose taken at the 125 medical institutes throughout Korea, the tube voltage ranged between 60~97 kVp, with the average use being 75 kVp, and the tube current ranged between 8~123 mAs, with the average use being 30 mAs. In the posteroanterior and lateral views of lumbar spine radiography, the tube voltage of each view ranged between 65~100 kVp (average use: 78 kVp) and 70~109 kVp (average use: 87 kVp), respectively, and the tube current of each view ranged between 10~100 mAs(average use: 35 mAs) and between 8.9~300 mAs(average use: 64 mAs), respectively. The measurements of entrance surface dose that patients receive during the pelvis and lumbar spine radiography show the following results: in the posteroanterior view of pelvis radiography, the minimum value is 0.59 mGy, the maximum value is 12.69 mGy and the average value is 2.88 mGy with the 1st quartile value being 1.91 mGy, the median being 0.59 mGy, and the 3rd quartile value being 3.43 mGy. Also, in the posteroanterior view of lumbar spine radiography, the minimum value is 0.64 mGy, the maximum value is 23.84 mGy, and the average value is 3.68 mGy with the 1st quartile value being 2.41 mGy, the median being 3.40 mGy, and the 3rd quartile value being 4.08 mGy. In the lateral view of lumbar spine radiography, the minimum value is 1.90 mGy, the maximum value is 45.42 mGy, and the average value is 10.08 mGy with the 1st quartile value being 6.03 mGy, the median being 9.09 mGy and the 3rd quartile value being 12.65 mGy. Conclusions : The diagnostic reference levels for patient radiation dose to be recommended to the medical institutes in Korea is 3.42 mGy for the posteroanterior view of pelvis radiography, 4.08 mGy for the posteroanterior view of lumbar spine radiography, and 12.65 mGy for the lateral view of lumbar spine radiography. Such values are all lower than the values recommended by 6 international organizations including World Health Organization, where the recommended values are 10 mGy for the posteroanterior view of pelvis radiography, 10 mGy for the posteroanterior view of lumbar spine radiography and 30 mGy for the lateral view of lumbar spine radiography.

  • PDF