• Title/Summary/Keyword: 1:1,000 수치지도

Search Result 194, Processing Time 0.023 seconds

Application of QuickBird Imagery for the Production of Digital Map (수치지도 제작을 위한 QuickBird 영상의 활용)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Kim, Youn-Gwan;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.63-71
    • /
    • 2008
  • Recently according to supplying high resolution satellite imagery, we take much interest in the update and the revision of digital map and thematic map based on the satellite images. This study analyzed the modeling accuracy for QuickBird imagery and produced the digital map on a scale 1 to 5000 by way of showing an example. find an exhibition digital map was analyzed the positioning accuracy for the presentation of the possibility and the utility in the production and the revision to the digital map using QuickBird imagery. In order to analyze accuracies of constructed data, the digital topographic maps of 1:5000 scale which were produced by Korea National Geographic information Institute(NGI) were used. As a result, the RMSE was calculated at ${\pm}2.207$ m and 2.39 m in x and y direction respectively and it is within the permissible accuracy required for mapping on a scale of 1 to 5000 on the mapping rule notified by the National Geographic Information Institute. It is expected that the results of this study will be fully used in the field of large scale digital mapping and be utilized as basic information in applied field of the production and the revision of digital map.

Updating Building Layer of Digital Map Using Airborne Digital Camera Image (디지털항공영상을 이용한 수치지도의 건물레이어 갱신)

  • Hwang, Won-Soon;Kim, Kam-Rae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.31-39
    • /
    • 2007
  • As the availability of images from airborne digital camera with high resolution is expanded, a lot of concern are shown about the production of orthoimage and digital map. This study presents the method of updating digital map using orthoimage from airborne digital camera image. Images were georectified using GPS surveying data. For the generation of orthoimage, Lidar DEM was used. The absolute positional accuracy of orthoimage was evaluated using GPS surveying data. And that of the building layer of digital map was estimated using the existed digital map at the scale of 1:1,000. The absolute positional accuracy of orthoimage was as followed: RMSE in X and Y were ${\pm}0.076m$ and ${\pm}0.294m$. The RMSE of the building layer were ${\pm}0.250m$ and ${\pm}0.210m$ in X and Y directions, respectively. The RMSE of the digital map using orthoimage from Aerial Digital Camera image fell within allowable error range established by NGII. Consequently, updating digital map using orthoimage from Aerial Digital Camera image can be applied to various fields including the construction of the framework data and the GIS of local government.

  • PDF

3dimension Topography Generation and Accuracy Analysis Using GIS (GIS를 이용한 3차원 지형도 생성 및 정확도 분석)

  • Nim Young Bin;Park Chang suk;Lee Cheol Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.189-196
    • /
    • 2005
  • Recently as map making skills developed and as digital maps prevailed, peoples began to take interest in the realistic 3dimension topography rather than the flat 2 dimension one. The experiment is done by using the topographical information from the digital maps, To analyze the preciseness of this 3dimension topography, analysis of the coordinate-changed standard map image and the location errors of the plane and height from digital values of the map's topography by layers and features, were done. The visual results of locational values differed by every programs of coordinate transformation. Errors of locations also appeared from the methods of correcting the visual sources, when deciding the standard source's datum point. The plan's accuracy of the image data coordinate transformation is about ${\pm}4.1m$. In ground distance, therefore, it is included in the allowed error of the 1:25,000 scale changed map, satisfying the plan's accuracy. Also, by the use of reasonably spaced grid, it satisfied the visual topographical accuracy. Because the 3 dimension topographical map can be produced effectively and rapidly by using various scale's standard map image and the digital map, the further practical use of 3 dimension topographic map made by using the existing topographies and changed maps has high expectations.

효율적인 지도제작 자동화를 위한 지형도 도식 정립

  • 이화종;김현덕;이재관;최석근
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.441-447
    • /
    • 2004
  • 본 연구는 지도제작 자동화의 효율성을 향상시키기 위하여 자동화율을 높이고, 단순ㆍ명료하며, 기존의 지형도와 최대한 유사한 형태의 지도가 출력되도록 하는 원칙을 가지고 1/5,000 수치지도 Ver2.0을 이용하여 연구하였다. 이를 위해 지도제작에 필요한 정보를 수치지도 Ver2.0에서 획득하고, 기존 지형도 도식규정에서 표현하는 정보와 비교ㆍ분석하여 실무자 및 제작자들과 많은 협의과정을 거친 후, 지도 제작 자동화에 유리하면서 지도의 미적 품질을 유지하는 도식을 고안하였다. 그 결과 지도제작자동화율을 높이고, 사용자들이 최신의 정보를 얻을 수 있도록 하였다.

  • PDF

Automated Generation of Multi-Scale Map Database for Web Map Services (웹 지도서비스를 위한 다축척 지도 데이터셋 자동생성 기법 연구)

  • Park, Woo Jin;Bang, Yoon Sik;Yu, Ki Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.435-444
    • /
    • 2012
  • Although the multi-scale map database should be constructed for the web map services and location-based services, much part of generation process is based on the manual editing. In this study, the map generalization methodology for automatic construction of multi-scale database from the primary data is proposed. Moreover, the generalization methodology is applied to the real map data and the prototype of multi-scale map dataset is generated. Among the generalization operators, selection/elimination, simplification and amalgamation/aggregation is applied in organized manner. The algorithm and parameters for generalization is determined experimentally considering T$\ddot{o}$pfer's radical law, minimum drawable object of map and visual aspect. The target scale level is five(1:1,000, 1:5,000, 1:25,000, 1:100,000, 1:500,000) and for the target data, new address data and digital topographic map is used.

Quality Improvement and Application increase of Framework Data in the Facility Area (시설물분야 기본지리정보 품질 향상 및 활용 증대 방안)

  • Ru Ji-Ho;Heo Min;Lee Hyun-Jik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.79-88
    • /
    • 2006
  • The facility area occupies approximately 50% of the topographic landmarks playing an important role in the utilization of geographical information in various fields, and requires more up-to-date information than the framework data of other areas. However, the expression mode in the 1:5000 digital map, which is a primitive data used for the preparation of framework data in the facility area, limits the description of the information on buildings, and its revision/renewal term of 5 years makes it far from up-to-date or accurate. Therefore, this study aimed to analyze the problems and quality deteriorating factors that may occur in establishing the framework data on the basis of existing establishment process of them in the facility area, and improve the qualify of the framework data in facility area by upgrading the methods of quality improvement. Expanding the information on attributes and improving the accuracy of locations were proposed as ways to increase the degree of utilization of the framework data in the facility area. And as the methods of expanding the information on attributes, it was proposed to improve the accuracy of the information on attributes for the framework data in the facility area using the information on attributes in the 1:1000 scale maps, and also to diversify the information on attributes in connection with the LMIS and AIS. To improve the accuracy of the locations, analyses were made with the potential problems that may occur in the establishment process through an experiment on the framework data in the facility area based on 1:1,000 digital map, and the results were used to present an improved, optimum process.

Application of CCD Image by Direct Georeferencing (Direct Georeferencing에 의한 CCD 영상의 적용기법)

  • Song Youn Kyung;Park Woon Yong;Park Hong Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.77-88
    • /
    • 2005
  • Direct Georeferencing (DG) is based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The methods can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. In this study, a CCD camera is simultaneously used in GPS/INS, and acquired CCD image through Direct Georeferencing produce digital orthoimage. In this process, methods of combining sensor and digital orthoimage are examined and estimated. For the comparison of the positioning accuracy digital orthoimage through Direct Georeferencing, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; one with a few GCP and the other without them. The produced maps can be used to correct or revised 1:1,000 or 1:5,000 scale maps accordingly.

A Study on the Generation of DEM for Flood Inundation Simulation using NGIS Digital Topographic Maps (NGIS 수치지형도를 이용한 효율적인 홍수범람모의용 지형자료 구축에 관한 연구)

  • Kwon, Oh-Jun;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.49-55
    • /
    • 2006
  • Nowadays, flood hazard maps have been generated to minimize the damages from the flooding. To generate such flood hazard maps, LiDAR data can be used as data source with higher data accuracy. LiDAR data, however, requires relatively higher cost and longer processing time. In this background, this study proposed DEM generation using NGIS digital topographic maps. For that, breaklines were processed to count directions of water flows. In addition, the river profile data, unique data source to represent real topography of the river area, were integrated to the breaklines to generate DEM. City of Kuri in Kyunggi Province was selected for this study and 1:1,000 and 1:5,000 topographic maps were integrated to process breaklines and river profile data were also linked to generate DEM. The generated DEM showed relatively lower vertical accuracy from mixing 1:1,000 and 1:5,000 topographic maps since 1:1,000 topographic maps were not available for some portion of the area. However, the DEM generated demonstrated reasonable accuracy and resolution for flood map generation as well as higher cost saving effects. On the contrary, for more efficient utilization of NGIS topographic maps, periodic map updating needs to be made including technical consideration in building breaklines and applying interpolation methods.

  • PDF

Analysis of Position Accuracy of Topography using LiDAR Data (LiDAR 데이터를 이용한 지형지물의 위치정확도 분석)

  • Kim, Yong-Suk;Kim, Seong-Cheol
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.270-278
    • /
    • 2008
  • This study : An analysis of position accuracy of topography according to using LiDAR data, aerial photo and digital map for a study area was conducted. The study area was selected in Hadan area, Sahagu, Busan aerial LiDAR data and aerial photo in the scales of 1:20,000, which are high tech surveying ways were used. The final digital orthoimage according to orientation process for each image and image resampling was producted. Using it, a checkpoint was chosen, information about the checkpoints selected was extracted, a coordinate of Horizontal Position through the screen digitizing was also extracted. Both the coordinates of LiDAR data and aerial photo using digital map in the scales of 1:20,000 announced to the public from NGII(National Geographic Information Institute) were gradually compared and analyzed. Based on the digital map, as a result of being both compared and analyzed, it has shown to us that horizontal position of aerial photo is more accurate than that of aerial LiDAR surveying (RMSE-building x:24cm, y:26cm).

Extraction and Revision of Building Information from Single High Resolution Image and Digital Map (단일 고해상도 위성영상과 수치지도로부터 건물 정보 추출 및 갱신)

  • Byun, Young-Gi;Kim, Hye-Jin;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.149-156
    • /
    • 2008
  • In this paper, we propose a method aiming at updating the building information of the digital maps using single high resolution satellite image and digital map. Firstly we produced a digital orthoimage through the automatic co-registration of QuickBird image and 1:1,000 digital map. Secondly we extracted building height information through the template matching of digital map's building vector data and the image's edges obtained by Canny operator. Finally we refined the shape of some buildings by using the result from template matching as the seed polygon of the greedy snake algorithm. In order to evaluate the proposed method's effectiveness, we estimated accuracy of the extracted building information using LiDAR DSM and 1:1,000 digital map. The evaluation results showed the proposed method has a good potential for extraction and revision of building information.