• Title/Summary/Keyword: 1,4-dihydropyridine

Search Result 42, Processing Time 0.022 seconds

Isolation and Linkage Mapping of Coding Sequences from Chicken Cosmids by Exon Trapping

  • Mannen, H.;Dote, Y.;Uratsuji, H.;Yoshizawa, K.;Okamoto, S.;Tsuji, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.309-312
    • /
    • 2004
  • We performed exon trapping in order to locate functional genes on chicken chromosomes (GGA) and to identify functional gene sequences from chicken cosmids. Sequence analysis of 100 clones revealed 17 putative exons, five of which were identified with known sequences in a gene database search: thymopoietin beta (TMPO), U5 snRNP-specific 40 kDa protein (HPRP8BP), dihydropyridine receptor alpha 1 subunit (CACNL1A3), cystein string protein (CPS) and C15orf4. We attempted to map the genes to chicken chromosomes by using FISH and linkage analysis. The chromosomal localizations were GGA1 (TMPO), GGA10 (C15orf4), GGA23 (HPRP8BP) and GGA28 (CPS) by FISH and linkage analysis, while that of CACNL1A3 was predicted to be on a microchromosome by FISH but not by linkage analysis. Comparative mapping analyses between chickens and humans for the genes revealed both known and new synteny. The syntenic conservation between GGA1 and human chromosome (HSA) 12q23 (TMPO) and between GGA10 and HSA15q25 (C15orf4), were consistent with a recent publication, while two new syntenies were observed between GGA28 and HSA20q13.3 in CPS and between GGA23 and HSA1p34-35 in HPRP8BP. The information of presently mapped genes can contribute as anchor markers based on functional genes and the construction of a comparative map.

Green Tea Extract, not Epigallocatechin gallate Inhibits Catecholamine Release From the Rat Adrenal Medulla

  • Park, Hyeon-Gyoon;Lee, Byung-Rai;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • The present study was designed to investigate the effects of green tea extract (CUMC6335) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rat adrenal gland. ill the presence of CUMC6335 (100 $\mu\textrm{g}$/mL) into an adrenal vein for 60 min, CA secretory responses evoked by ACh(5.32 mM), high $K^+$ (56 mM) and Bay-K-8644 (10$\mu$M for 4 min) from the isolated perfused rat adrenal glands were greatly inhibited in a time-dependent fashion. However, EGCG (8 $\mu\textrm{g}$/mL) did not affect CA release evoked by ACh, high $K^+$ and Bay-K-8644. CUMC6335 itself did fail to affect basal catecholamine output. Taken together, these results demonstrate that CUMC6335 inhibits greatly CA secretion evoked by stimulation of cholinergic nicotinic receptors as well as by the direct membrane deplarization from the isolated perfused rat adrenal gland. It is felt that this inhibitory effect of CUMC6335 may be due to blocking action of the L-type dihydropyridine calcium channels in the rat adrenal medullary chromaffin cells, which is relevant to the cholinergic nicotinic blockade. It seems that there is a big difference in mode of action between CUMC6335 and EGCG.

Influence of Glibenclamide on Catecholamine Secretion in the Isolated Rat Adrenal Gland

  • No, Hae-Jeong;Woo, Seong-Chang;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.108-117
    • /
    • 2007
  • The aim of the present study was to investigate the effect of glibenclamide, a hypoglycemic sulfonylurea, which selectively blocks ATP-sensitive K$^+$ channels, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of glibenclamide (1.0 mM) into an adrenal vein for 90 min produced time-dependently enhanced the CA secretory responses evoked by ACh (5.32 mM), high K$^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, 100 ${\mu}$M for 2 min), McN-A-343 (a selective muscarinic M1 receptor agonist, 100 ${\mu}$M for 2 min), Bay-K-8644 (an activator of L-type dihydropyridine Ca$^{2+}$ channels, 10 ${\mu}$M for 4 min) and cyclopiazonic acid (an activator of cytoplasmic Ca$^{2+}$-ATPase, 10 ${\mu}$M for 4 min). In adrenal glands simultaneously preloaded with glibenclamide (1.0 mM) and nicorandil (a selective opener of ATP-sensitive K$^+$ channels, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of glibenclamide-treatment only. Taken together, the present study demonstrates that glibenclamide enhances the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this facilitatory effect of glibenclamide may be mediated by enhancement of both Ca$^{2+}$ influx and the Ca$^{2+}$ release from intracellular store through the blockade of K$_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that glibenclamide-sensitive K$_{ATP}$ channels may play a regulatory role in the rat adrenomedullary CA secretion.

Ca-dependent Alteration in Basal Tone, Basal $^{45}Ca$ Uptake and $^3H-nitrendipine$ Binding in the Aorta of Spontaneously Hypertensive Rats

  • Chang, Seok-Jong;Jeon, Byeong-Hwa;Kim, Hoe-Suk
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.27-35
    • /
    • 1994
  • We investigated the alterations in basal tone of aortic strips by changing the Ca concentration, basal $^{45}Ca$ uptake and $^3H-nitrendipine$ binding of the single cells of aortic smooth muscles in the spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. While the basal tone of the aortic strips in WKY rats was not affected by alteration of Ca concentration, that in SHR was decreased by the removal of Ca from the bath solution and was recovered by the restoration of Ca to normal levels. This contraction increased in a Ca concentration-dependent manner and reached a maximum at 2 mM Ca. The basal tone of aorta in SHR was suppressed by verapamil $(10^{-6}M)$. The basal tone of aorta in SHR increased about 50% in the strips of endothelial rubbing, compared with that of intact endothelium. Basal $^{45}Ca$ uptake in the aortic single smooth muscle cells of SHR was greater than that of WKY (p<0.01), Specific bindings of $[^3H]nitrendipine$ in the aortic single smooth muscles of SHR and WKY were saturable. The dissociation constant $(K_d)\;was\;0.71{\pm}0.15\;and\;1.18{\pm}0.08nM$ SHR, respectively, and the difference in $K_d$ between two strains was statistically significant (p<0.03). The maximal binding capacity $(B_{max})\;was\;34.6{\pm}3.2\;and\;47.4{\pm}4.3\;fmol/10^6$ SHR respectively, and the difference of $(B_{max})$ between two strains was statistically significant (p<0.05). from the above results, it is suggested that the increase of Ca influx via potential-operated Ca channels and the increase of the number of dihydropyridine-sensitive Ca channels contribute to high basal tone of the aortic strips in SHR.

  • PDF

The Study on Association of Calcium Channel SNPs with Adverse Drug Reaction of Calcium Channel Blocker in Korean

  • Chung, Myeon-Woo;Bang, Sy-Rie;Jin, Sun-Kyung;Woo, Sun-Wook;Lee, Yoon-Jung;Kim, Young-Sik;Lee, Jong-Keuk;Lee, Sung-Ho;Roh, Jae-Sook;Chung, Hye-Joo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.156-161
    • /
    • 2007
  • Rapid advances in pharmacogenomic research have provided important information to improve drug selection, to maximize drug efficacy, and to minimize drug adverse reaction. The SNPs that are the most abundant type of genetic variants have been proven as valid biomarkers to give information on the prediction of pharmacokinetic/pharmacodynamic properties of drugs based on genotype. In order to elucidate a correlation between SNPs of calcium channel encoding gene and adverse reactions of calcium channel blockers, we investigated SNPs in CACNA1C gene known as a binding site of calcium channel blocker. 96 patients with hypertension who had taken or are taking an antihypertensive drug, 1,4-dihydropyridine (DHP) were included for analysis. These patients were composed of 47 patients with adverse drug reactions (ADR) such as edema from calcium channel blockers and 49 patients without ADR as a control group. The exons encoding the drug binding sites were amplified by PCR using specific primers, and SNPs were analyzed by direct sequencing. We found that there was no SNP in the exons encoding DHP binding site, but four novel SNPs in the exon-intron junction region. However, four novel SNPs were not associated with the ADR of calcium channel blockers. In conclusion, this study showed that ADR from calcium channel blockers may not be caused by SNPs of the binding sites of calcium channel blockers in CACNA1C gene.

Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles (골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

Influence of Nicorandil on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Koh, Young-Youp;Lee, Eun-Sook;No, Hae-Jeong;Woo, Seong-Chang;Chung, Joong-Wha;Seoh, Yoo-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.97-106
    • /
    • 2007
  • The present study was attempted to investigate the effect of nicorandil, which is an ATP-sensitive potassium ($K_{ATP}$) channel opener, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of nicorandil ($0.3{\sim}3.0mM$) into an adrenal vein for 90 min produced relatively dose-and time-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $k^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, $100{\mu}M$ for 2 min), McN-A-343 (a selective muscarinic $M_1$ receptor agonist, $100{\mu}M$ for 4 min), Bay-K-8644 (an activator of L-type dihydropyridine $Ca^{2+}$ channels, $10{\mu}M$ for 4 min) and cyclopiazonic acid (an activator of cytoplasmic $Ca^{2+}$-ATPase, $10{\mu}M$ for 4 min). In adrenal glands simultaneously preloaded with nicorandil (1.0 mM) and glibenclamide (a nonspecific $K_{ATP}$-channel blocker, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of nicorandil-treatment only. Taken together, the present study demonstrates that nicorandil inhibits the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this inhibitory effect of nicorandil may be mediated by inhibiting both $Ca^{2+}$ influx and the $Ca^{2+}$ release from intracellular store through activation of $K_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that nicorandil-sensitive $K_{ATP}$ channels may play an inhibitory role in the regulation of the rat adrenomedullary CA secretion.

Influence of Cilnidipine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Woo, Seong-Chang;Baek, Young-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.265-272
    • /
    • 2004
  • The present study was attempted to investigate the effect of cilnidipine (FRC-8635), which is a newly synthesised novel dihydropyridine (DHP) type of organic $Ca^{2+}$ channel blockers, on secretion of catecholamines (CA) evoked by acetylcholine (ACh), high $K^+$, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine $(1{\sim}10{\mu}M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M),\;DMPP\;(10^{-4}M\;for\;2\;min)$ and McN-A-343 $(10^{-4}M\;for\;2\;min)$. However, lower dose of cilnidipine did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$, higher dose of it reduced greatly CA secretion of high $K^{+}$. Cilnidipine itself did fail to affect basal catecholamine output. In the presence of cilnidipine $(10{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10{\mu}M)$, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid $(10{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. Moreover, ${\omega}-conotoxin\;GVIA\;(1{\mu}M)$, a selective blocker of the N-type $Ca^{2+}$ channels, given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by Ach, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. Taken together, these results demostrate that cilnidipine inhibits CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland without affecting the basal release. However, at lower dose, cilnidipine did not affect CA release by membrane depolarization while at larger dose inhibited that. It seems likely that this inhibitory effect of cilnidipine is exerted by blocking both L- and N-type voltage-dependent $Ca^{2+}$ channels (VDCCs) on the rat adrenomedullary chromaffin cells, which is relevant to inhibition of both the $Ca^{2+}$ influx into the adrenal chromaffin cells and intracellular $Ca^{2+}$ release from the cytoplasmic store. It is thought that N-type VDCCs may play an important role in regulation of CA release from the rat adrenal medulla.

Resveratrol Inhibits Nicotinic Stimulation-Evoked Catecholamine Release from the Adrenal Medulla

  • Woo, Seong-Chang;Na, Gwang-Moon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.155-164
    • /
    • 2008
  • Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10${\sim}100{\mu}$M) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_n$ receptor agonist, 100${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100${\mu}$M) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30${\mu}$M), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent$Na^+$ channels, 100${\mu}$M), Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10${\mu}$M), and cyc1opiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10${\mu}$M) were significantly reduced. In the simultaneous presence of resveratrol (30${\mu}$M) and L-NAME (an inhibitor of NO synthase, 30${\mu}$M), the CA secretory evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyc1opiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through $Na^+$ and $Ca^{2+}$ channels into the adrenomedullary cells as well as by blocking the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.

Inhibitory Effects of Total Ginseng Saponin on Catecholamine Secretion from the Perfused Adrenal Medulla of SHRs

  • Jang, Seok-Jeong;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.176-190
    • /
    • 2011
  • There seems to be some controversy about the effect of total ginseng saponin (TGS) on the secretion of catecholamines (CA) from the adrenal gland. Therefore, the present study aimed to determine whether TGS can affect the CA release in the perfused model of the adrenal medulla isolated from spontaneously hypertensive rats (SHRs). TGS (15-150 ${\mu}g/mL$), perfused into an adrenal vein for 90 min, inhibited the CA secretory responses evoked by acetylcholine (ACh, 5.32 mM) and high $K^+$ (56 mM, a direct membrane depolarizer) in a dose- and time-dependent fashion. TGS (50 ${\mu}g/mL$) also time-dependently inhibited the CA secretion evoked by 1.1-dimethyl-4 -phenyl piperazinium iodide (DMPP; 100 ${\mu}M$, a selective neuronal nicotinic receptor agonist) and McN-A-343 (100 ${\mu}M$, a selective muscarinic M1 receptor agonist). TGS itself did not affect basal CA secretion (data not shown). Also, in the presence of TGS (50 ${\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator (50 ${\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of TGS (50 ${\mu}g/mL$) and N${\omega}$-nitro-L-arginine methyl ester hydrochloride [an inhibitor of nitric oxide (NO) synthase, 30 ${\mu}M$], the inhibitory responses of TGS on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid, and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of TGS-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of TGS (150 ${\mu}g/mL$) was greatly elevated compared to the corresponding basal released level. Taken together, these results demonstrate that TGS inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal medulla of the SHRs. It seems that this inhibitory effect of TGS is mediated by inhibiting both the influx of $Ca^{2+}$ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade, without the enhancement effect on the CA release. Based on these effects, it is also thought that there are some species differences in the adrenomedullary CA secretion between the rabbit and SHR.