• Title/Summary/Keyword: 1,3-Diones

Search Result 32, Processing Time 0.014 seconds

Magnetic Nanoparticle Immobilized N-Propylsulfamic Acid as a Recyclable and Efficient Nanocatalyst for the Synthesis of 2H-indazolo[2,1-b]phthalazine-triones in Solvent-Free Conditions: Comparison with Sulfamic Acid

  • Rostami, Amin;Tahmasbi, Bahman;Yari, Ako
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1521-1524
    • /
    • 2013
  • N-Propylsulfamic acid supported onto magnetic $Fe_3O_4$ nanoparticles (MNPs-PSA) was used as an efficient and magnetically recoverable catalyst for synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives from the three-component, one-pot condensation reaction of phthalhydrazide, aromatic aldehydes and cyclic 1,3-diones, in good to excellent yields at $100^{\circ}C$ under solvent-free conditions. The catalyst was easily separated with the assistance of an external magnetic field from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency. In order to compare, the synthesis of 2H-Indazolo[ 2,1-b]phthalazine-1,6,11(13H)-trione derivatives in the presence of catalytic amount of sulfamic acid (SA) under same reaction condition was also reported.

2D-QSAR Analyses on The Tyrosinase Inhibitory Activity of 2-[(2,6-Dioxocyclohexyl)methyl]-cyclohexane-1,3-dione Analogues (2-[(2,6-Dioxocyclohexyl)methyl]cyclohexane-1,3-dione 유도체의 Tyrosinase 저해활성에 관한 2D-QSAR 분석)

  • Kim, Sang-Jin;Sung, Nack-Do
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • The following conclusion was made from the 2D-QSAR model for the tyrosinase inhibitory activity according to the variation of the substituents R1 and R2 in analogues of compound 2-[(2,6-dioxocyclohexyl)methyl]cyclohexane- 1,3-dione (1-23). The best optimized 2D-QSAR model was $Obs.pI_{50}=-0.295({\pm}0.031)TDM$ $-0.120({\pm}0.014)DMZ+0.135({\pm}0.050)DMX.R_2+6.382({\pm}0.17)$, and the correlation $r^2=0.905$) of which was greater than its predictability ($q^2=0.843$). The magnitude of the effect of tyrosinase inhibitory activities was in order of TDM > $DMX.R_2{\geq}DMZ$, and it tended to increase as the hydrophobicity of substrate molecule (ClogP > 0) as well as the steric favor of substituent $R_1$ increased. The analysis of the model implies that inhibitory activity of substrate molecule will increase as $DMX.R_2$ (Dipole moment X component of $R_2$-substituent) increases, while TDM (Total Dipole Moment) and DMZ(Dipole Moment of Z-Component) decrease. As such, it is deemed feasible to conclude, that in order to increase the inhibitory effect, it would be rather desirable to replace the polar groups within the molecules with non-polar functional groups.