• Title/Summary/Keyword: 1%-nitrogen doped Ni

Search Result 4, Processing Time 0.019 seconds

Thermal Stability Improvement of Ni-Germanide Using Ni-N(1%) for Nano Scale Ge-MOSFET Technology (나노급 Ge-MOSFET를 위한 Ni-N(1%)을 이용한 Ni-germanide의 열 안정성 개선)

  • Yim, Kyeong-Yeon;Park, Kee-Young;Zhang, Ying-Ying;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.17-18
    • /
    • 2008
  • In this paper, 1%-nitrogen doped Nickel was used for improvement of thermal stability of Ni-Germanide. Proposed Ni-N(1%)/TiN structure has shown better thermal stability, sheet resistance and less agglomeration characteristic than pure Ni/TiN structure. During the germanidation process, it is believed that the nitrogen atoms in the deposited nickel layer can suppress the agglomeration of Ni germanide by retarding the diffusion of Ni atoms toward silicon layer, hence improve the thermal stability of Ni-germanide.

  • PDF

Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms

  • Mananghaya, Michael R.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.34-46
    • /
    • 2012
  • Dopants and defects can be introduced as well as the intercalation of metals into single wall carbon nanotubes (SWCNTs) to modify their electronic and magnetic properties, thus significantly widening their application areas. Through spinpolarized density functional theory (DFT) calculations, we have systemically studied the following: (i) (10,0) and (5,5) SWCNT doped with nitrogen ($CN_xNT$), (ii) (10,0) and (5,5) SWCNT with pyridine-like defects (3NV-$CN_xNT$), and (iii) chemical functionalization of (10,0) and (5,5) 3NV-$CN_xNT$ with 12 different transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt). Attention was done in searching for the most stable configurations, deformation, calculating the formation energies, and exploring the effects of the doping concentration of nitrogen and pyridine-like nitrogenated defects on the electronic properties of the nanotubes. Also, calculating the corresponding binding energies and effects of chemical functionalization of TMs on the electronic and magnetic properties of the nanotubes has been made. We found out that the electronic properties of SWCNT can be effectively modified in various ways, which are strongly dependent not only on the concentration of the adsorbed nitrogen but also to the configuration of the adsorbed nitrogen impurities, the pyridine-like nitrogenated defects, and the TMs absorbed; due to the strong interaction between the d orbitals of TMs and the p orbitals of N atoms, the binding strengths of TMs with the two 3NV-$CN_xNT$ are significantly enhanced when compared to the pure SWCNTs.

Study of thermal stability of Nitrogen doped Nickel Germanosilicide (Nitrogen 도핑된 Nickel Germanosilicide의 열안정성 연구)

  • Oh Soon-Young;Yun Jang-Gn;Hwang Bin-Feng;Kim Yong-Jin;Ji Hee-Hwan;Kim Ui-Sik;Cha Han-Seob;Heo Sang-Bum;Lee Jeong-Gun;Wang Jin-Suk;Lee Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.513-516
    • /
    • 2004
  • 본 논문에서는 $20\%$ Ge 조성 비율을 갖는 SiGe 200nm 에 $1\%$-Nitrogen doping 된 Nickel 을 이용하여 새로운 Nickel Germanosilicide 방법을 제안하여 Ni-Germanosilicide 의 단점인 열 안정성 개선에 대해 연구하였다. Nitrogen atom 이 grain boundary 에 존재하여 Nickel의 diffusion을 억제시키는 역할을 하여 shallow한 실리사이드와 uniform 한 실리사이드 계면 특성을 얻게 되었다. 그리고 실리사이드 형성 후, 고온로 열처리 $600^{\circ}C$, 30min 후에도 낮고 안정한 면 저항 특성으로 열안정성 개선 할 수 있다.

  • PDF

Progress in Si crystal and wafer technologies

  • Tsuya, Hideki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.13-16
    • /
    • 2000
  • Progress in Si crystal and wafer technologies is discussed on single crystal growth, wafer fabrication, epitaxial growth, gettering, 300 mm and SOI. As for bulk crystal growth, the mechanism of grown-in defects (voids) formation, the succes of grown-in defect free crystal growth technology and nitrogen doped crystal are shown. New wafer fabrication technologies such as both-side mirror polishing and etchingless process have been developed. The epitaxial growth of SiGe/Si heterostructure for high speed bipolar device is treated. Gettering technology under low temperature process such as RTP is important, and also it is shown that IG effect for Ni could be predicted using computer simulation of precipitate density and size. The development of 300 mm wafer and SOI has made progress steadily.

  • PDF