• Title/Summary/Keyword: 0가철

Search Result 10, Processing Time 0.022 seconds

Fenton Oxidation of Landfill Leachate by $Fe^0,\;Fe^{2+},\;Fe^{3+}\;/\;H_2O_2$ Systems ($Fe^0$, $Fe^{2+}$, $Fe^{3+}$ / $H_2O_2$ 시스템을 이용한 침출수의 Fenton 산화반응)

  • Park, Sung-Ho;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.402-408
    • /
    • 2005
  • This investigation aimed at selecting the optimum catalyst and reaction conditions used in Fenton oxidation for landfill leachate treatment and was carried out at ambient temperature using a lab-scale experiment. The investigation led to the following results: 1) The optimum pH and dose for each iron catalyst were as follows: $Fe^{2+}\;=\;1,200\;mg/L$, $H_2O_2\;=\;1,200\;mg/L$, initial pH=3.0; $Fe^{3+}\;=\;1,200\;mg/L$, $H_2O_2\;=\;1,500\;mg/L$, initial pH=4.5; $Fe^0\;=\;1,200\;mg/L$, $H_2O_2\;=\;900\;mg/L$, initial pH=4.0, respectively. 2) The progress of Fenton oxidation could be instrumentally monitored by measuring redox potential evolution during leachate oxidation, thus, indicating the possibility of an on-line process monitoring. 3) A simple acid-base titration of Fenton-treated leachate proved that a relevant fraction of by- products formed during the treatment was made of acidic compounds in the optimum reaction condition for each catalyst used, thus demonstrating that the higher the extent of Fenton oxidation the greater was the amount of acids formed. 4) With the aim of selecting the optimum catalyst among $Fe^0$, $Fe^{2+}$ and $Fe^{3+}$, removal efficiency of each parameter in the optimum reaction conditions was considered. Although $Fe^{3+}$ was higher than other catalysts($Fe^0$, $Fe^{2+}$) in removal efficiency, $Fe^0$ was a optimum catalyst with a view of cost effectiveness.

Dechlorination of Atrazine in Sediment Using Zero Valent Iron (영가철($Fe^0$)을 이용한 퇴적물내 Atrazine의 탈염소화)

  • Kim, Geon-Ha;Jeong, Woo-Hyeok;Choe, Seung-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.33-40
    • /
    • 2006
  • Residual pesticides discharged from diffuse sources at agricultural area in association with suspended solid will be settled at downstream, and may degrade surface water quality. This research studied dechlorination kinetic of atrazine, one of triazine-category herbicide, using zero-valent iron (ZVI) in sediment. It can be observed from the experiments that buffer capacity of sediment helped pH maintained beutral, resulted in continuous dechlorination. Sediments were spiked with atrazine at 10, 30, and 50 mg atrazine/L of total sediment for batch experiments. Dechlorination constants were $1.38x10^{-1}/d$ for the initial concentration of 10 mg/L, $1.29x10^{-l}/d$ for 30 mg/L, and $7.43x10^{-2}/d$ for 50 mg/L while dechlorination constants of initial concentration of 50 mg/L without ZVI adding were estimated as $3.05x10^{-2}/d. Half lifes atrazine by ZVI were estimated as 5.03 d fur 10 mg/L, 5.38 d for 30 mg/L, and 9.33 d for 50 mg/L, respectively.

Removal of Nitrate by Ferrous Cement Hydrates (2가철 시멘트 수화물에 의한 질산성 질소의 제거)

  • Kang, Wan-Hyup;Park, Tae-Sook;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • Ferrous cement hydrates made from hydrating Portland cement doped with Fe (II) were reported to reductively dechlorinate chlorinated organics and to reduce Cr (VI) to Cr (III). In this study, kinetics of nitrate removal by ferrous cement hydrates were investigated. Nitrate removal kinetics were characterized by experimental variables such as cement hydration, amount of cement addition, Fe (II) dose, pH, and byproducts. As a result, hydrated cement showed better performances than non-hydrated cement due to the formation of LDH (layered double hydroxide). Doping of Fe (II) into the cement was found to improve removal efficiency at high pHs by association with Fe (II) sorbed on cement hydrates as a reactive reductant. Reduction of nitrate produced ammonium as a major product, which accounted for 63.5% of the final products, and nitrite (0.15%) as a minor product. These results indicate that the developed media are effective as sorbent/reducing agents in the nitrate removal and the reaction mechanisms of nitrate removal are sorption and reduction.

A Study on the Leaching of Gold and Silver from Concentrate by Acidothiouration (산성치오요소법에 의한 금정광으로부터 금, 은의 침출에 관한 연구)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.3 no.2
    • /
    • pp.17-23
    • /
    • 1994
  • The dissolution of gold and silver from concentrate was studied with acidic thiourea solution. The results showed that the gold and silver extraction was severely affected by concentration of thiourea and oxidant, pulp density, etc. Especially, oxidant such as ferric ions enhanced the leching rate of gold and silver. High concentration of ferric ions, however, dissolved the sulfide ore to form electrochemically passive layer on the surface of ore particles, which caused the precious metal not to be leached out from the ore. The use of $SO_2$could not effectively enhance the recovery of precious metal but reduce to some extent the consumption of thiourea. The leaching of gold and silver was achieved with recovery more than 90% and 80%, respectively, under the following conditions; Thiourea conc. :0.4M Oxidant : None $H_2SO_4$ conc. : 0.5M Pulp density : <10% Leaching time :4 Hrs Potential :250mV The Thiourea was consumed about 10% in comparison with its initial concentration.

  • PDF

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Investigation of Corrosion Minerals from the Remediation for TCE-Contaminate d Groundwater (TCE로 오염된 지하수 정화시 부식 광물에 대한 연구)

  • Moon, Ji-Won;Moon, Hi-Soo;Yungoo Song;Kang, Jin-Kyoo;Yul Roh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.107-123
    • /
    • 2003
  • The objective of this study was to investigate mineral precipitates, which derived from the zero valent iron (ZVI) corrosion during TCE dechlorination and to find the controlling factors in mineral precipitates. A series of column experiemnts were conducted to evaluate the location of ZVI and the effects of electrode arrangements in electro-enhanced permeable reactive barrier (E2PRB) systems. Based on mineralogical study, ZVI samples near the influent port had more lepidocrocite, ferrihydrite or Fe (oxy)hydroxide, and (phospho)siderite while backward samples had more akaganeite, magnetite/maghemite, and intermediate green rust (GR) I and GR II. A suite of mineral distribution was preferabley related to the dissolved oxygen and the increased pH. Controlling factors of mineral precipitates in an E2PRB system were found to be (1) pH, (2) dissolved oxygen, (3) the types of Fe intermediates, and (4) anionic species to form complex strongly.

Cr(VI) Removal from Artificial Groundwater by Granular Activated Carbon and Regeneration of the Spent Carbon (입상활성탄을 이용한 인공 조제 지하수내의 Cr(VI) 제거와 그 활성탄의 재생)

  • Ihnsup Han
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.11-31
    • /
    • 1999
  • Removal of hexavalent chromium from artificial groundwater (AGW) by granular activated carbon (GAC) was investigated in batch and continuous-flow column studies. Experimental parameters that were examined included solution pH, presence of dissolved oxygen (DO), and GAC pretreatment with Fe(II). As the solution pH increased from 4 to 7.5, the amount of Cr(VI) removed by both GACs decreased significantly. Exclusion of DO from the experimental systems resulted in greater removal of Cr(VI) from solution, possibly as a result of reduction to Cr(III). However, pretreatment of the GAC with a reductant (Fe(II)) did not improve Cr(VI) removal. Equilibration With 0.01 M $K_2$$HPO_4$[to extract adsorbed Cr(VI)] followed by a wash with 0.02 N $K_2$$HPO_4$[to remove precipitated/sorbed Cr(III)] proved to be a viable approach for the regeneration of carbons whose Cr(VI) removal capacities had been exhausted. The performance of the regenerated carbons exceeded that of the virgin carbons, primarily because of the favorable adsorption of Cr(VI) at lower pH values and the reduction of Cr(VI) to Cr(III), The presence of Cr(III) in acid wash solutions provides direct evidence that Cr(VI) is reduced to Cr(III) in GAC systems under relatively acidic conditions. GAC performance over five complete cycles was consistently high, which suggests that such a system will be able to function over many operation cycles without deleterious effects.

  • PDF

Preparation of Iron-Coated Sand and Arsenic Adsorption (철코팅 모래흡착제 제조 및 비소흡착)

  • Chang, Yoon-Young;Kim, Kwang-Sub;Jung, Jae-Hyun;Lee, Seung-Mok;Yang, Jae-Kyu;Park, Joon-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.697-703
    • /
    • 2005
  • Iron-coated sand(ICS) was prepared with variation of particle size of Joomoonjin sand, primary and secondary coating temperature, coating time, and dosage of initial Fe(III). An optimum condition of the preparation ICS was selected from the coating efficiency, stability of coated Fe(III), and removal efficiency of As(V). Coated amount of Fe(III) increased as primary coating temperature increased with smaller particle size of sand. Coating efficiency was quite similar over the investigated secondary coating temperature and time, while adsorption efficiency of As(V) onto ICS was severely reduced with ICS prepared at higher secondary coating temperature. By considering these results, an optimum secondary coating temperature and time for the preparation of ICS was selected as $150^{\circ}C$ and 1-hr, respectively. Coating efficiency increased us the dosage of initial Fe(III) up to 0.8 Fe(III) mol/kg sand and then no distinct increase was noted. Maximum As(V) adsorption was observed at 0.8 Fe(III) mol/kg sand. Secondary coating temperature and time were important parameters affecting stability of ICS, showing decreased dissolution of Fe(III) from ICS prepared at higher coating temperature and at longer coating time. From anionic type adsorption of As(V) onto ICS, it is possible to suggest the application of ICS for the removal of As(V) contaminated in acidic water system.

Studies of Liming Effect on the Improvement of an Acid Sulphate Paddy Soil (특이산성답(特異酸性畓) 토양(土壤)의 개량(改良)을 위(爲)한 석회시용(石灰施用) 효과(?果)에 관(關)한 연구(硏究))

  • Park, Young-Sun
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.193-218
    • /
    • 1974
  • These studies were carried out for the elucidation of liming effect on the growth of rice seedlings and the chemical characteristics of an acid sulphate paddy that shows not only extremely high acidity of soil but also poor growth of rice plants, consequently low yield. Thus the liming effect on the changes of acidity, oxidation-reduction potential, and the contents of iron, aluminium, sulphate, and phosphorus fractions in the soil was investigated under the waterlogging and drying condition. The reclaimable or inhibitory effect of phosphorus, iron and aluminium on the growth of rice seedlings was also investigated under liming. The results are summarized as follows: 1. After liming, the pH of the acid sulphate subsoil decreased again on drying. 2. The oxidation-reduction potential reached a minimum after 5 days of flooding and greatly decreased on liming but increased after drying. 3. The contents of ferrous iron soluble in water-and Morgan's solution reached a maximum after 15 days of flooding and only the content of water soluble ferrous iron was greatly decreased. 4. The content of aluminium soluble in water-and Morgan's solution decreased by flooding and liming, and showed a tendency to increase on drying. 5. In the limed acid sulphate soil, the content of water soluble calcium showed a highly significant negative correlation with the content of sulphate and liming decreased sulphate content in the soil. 6. The contents of total phosphorus was 496.3 ppm in the acid sulphate topsoil and 387.5 ppm in the subsoil. The content of each phosphorus fraction was in the order of Fe-P>Occ. Fe-P>Ca-P>Occ. Al-P>Al-P and Fe-P content in the soil was the highest fraction among them. 7. Lime application increased greatly Ca-P and Al-P, and Occ. Fe-P and Occ. Al-P only slightly, but decreased Fe-P differently in each soil. 8. Effect of phosphorus on the dry matter yield of rice seedlings was great. The optimum amount of phosphorus to produce maximum dry matter yield of rice seedlings appeared to be 6.8% of maximum absorption (absorption coefficient) without liming and 10.0% with liming. 9. In rice seedlings liming increased the content and uptake of calcium and silica but decreased those of iron and aluminium. Phosphorus application increased the content and uptake of phosphorus and decreased iron while the application of iron and aluminium increased their contents and uptake but decreased those of phosphorus. 10. Liming greatly alleviated such toxicity of iron and aluminium. 11. When phosphorus was applied, the dry matter yield of rice seedlings showed highly significant positive correlations with uptake of phosphorus, calcium and silica each. When iron and aluminium were applied, dry matter yields indicated significant positive correlations with the contents or uptake of calcium and silica each, but significant negative correlations with the content or uptake of iron and aluminium. 12. Under the application of phosphorus and lime, dry matter yields showed significant positive correlations with pH and Morgan's extractable calcium each of the soil samples after harvest. Under the application of lime, iron and aluminium, dry matter yields showed significant positive correlations with pH, calcium and silica each, but negative correlations with iron and aluminium contents each of the soil samples after harvest.

  • PDF

Degradation Mechanisms of TCE in Cement/Fe(II) Systems (시멘트/Fe(II) 시스템에서의 TCE 분해 기작)

  • Lee, Yun-Mo;Kang, Wan-Hyup;Choi, Won-Ho;Hwang, In-Sung;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.778-782
    • /
    • 2007
  • This study investigated the dechlorination mechanisms of TCE by Fe(II) associated with cement. Batch slurry experiments were peformed to investigate the behaviors of selected ions; Fe(II), Fe(III), $Ca^{2+}$, $SO_4^{2-}$ in cement/Fe(II) system. The kinetic experiments of TCE in cement/Fe(II) systems showed that injected Fe(II) was mostly sorbed on cement within 0.5 day and 90% of injected 200 mM sulfate was sorbed on cement within 0.5 day when $[TCE]_0$ = 0.25 mM and $[Fe(II)]_0$ = 200 mM. The kinetic experiments of TCE in hematite/CaO/Fe((II) systems were conducted for simulation of cement/Fe(II) system. Calcium oxide that is one of the major components in cement hydration reactions or has a reactivity in limited conditions. Hematite assumed the ferric iron oxide component of cement. The reactivities observed in hematite/CaO/Fe(II) system were comparable to those reported for cement/Fe(II) systems containing similar molar amounts of Fe(II). The behavior of Fe(II) and $SO_4^{2-}$ sorbed on solid phase at an early stage of reaction in hematite/CaO/Fe(II) system was similar to that of cement/Fe(II) system. Ferric ion was released from hematite at an early period of reaction at low pH. The experimental evidence of kinetic test using hematite/CaO/Fe(II) system implies that the reactive reductant is a mixed-valent Fe(II)-Fe(III) mineral, which may be similar to green rust. Fe(II) sorbed on cement can be converted to new mineral phase having a reactivity such as Fe(II)-Fe(III) (hydr)oxides in cement/Fe(II) systems.