• 제목/요약/키워드: . HTS current leads

검색결과 41건 처리시간 0.026초

10kJ SMES용 고온초전도 전류리드의 설계 및 제작 (Design and manufacture of HTS current lead for 10kJ SMES)

  • 박해용;김광민;김대원;김아롱;박민원;유인근;김석호;심기덕;손명환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.599_600
    • /
    • 2009
  • In superconducting magnetic energy storage (SMES) systems, the current leads are usually divided into two parts. Normal metals like brass or copper are often used in the first part from the room temperature to the 1st stage of the cryocooler. Their dimensions were decided to minimize the conduction heat penetration and Ohm's heat generation. The second part down to the cryogenic coil is made of high temperature superconductor (HTS). HTS current leads can reduce the conductive heat penetration because they have poor thermal conductivity and generate no Ohm's heat generation. The brass current lead and the HTS current lead were designed and fabricated for application to the 10kJ class SMES system. The HTS current lead is 300A class. The HTS current lead was stacked with 2 HTS layers using the $Bi_2Sr_2Ca_2Cu_3O_x$ (BSCCO)/Ag. In this paper, we introduce the design procedure of the current leads and discuss the test results of the current leads.

  • PDF

고온초전도 테이프를 이용한 적층형 전류 도입선의 최적설계 (Optimum Design of Multi-Stacking Current Lead Using HTS Tapes)

  • 설승윤;김민수;나필선
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.35-39
    • /
    • 2001
  • The optimum cross-sectional area profile of gas-cooled high-temperature superconductor(HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant satiety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-stacking HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-stacking current leads are discussed.

  • PDF

Designs for 25-kA and 40-kA Vapor-Cooled Bi2223/Copper Leads with the Bi2223 Section Operating in the Current-Sharing Mode

  • Lee, Haigun;Kim, Ho-Min;Yukikazu Iwasa;Kim, Keeman
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권4호
    • /
    • pp.222-230
    • /
    • 2003
  • This paper presents reference designs for vapor-cooled HTS/Copper leads rated at 25 kA and 40 kA and that satisfy a protection criterion. Each HTS section is cooled by the effluent helium vapor boiling from a 4.2-K bath. Each HTS section is based on a design concept in which a short portion of its warm end (77.3 K) operates in the current-sharing mode; such operation results in a considerable saving for HTS materials required in the HTS section. Two designs of "fully superconducting" vapor-cooled HTS sections, one rated at 25 kA and the other at 40 kA are also presented as comparison bases for the new HTS sections. Each warm end of HTS sections is coupled to an optimal vapor-cooled copper lead rated at the same current as that for the HTS section. The extra coolant required at 77.3 K at the coupling station, an optimal length of the copper section will be shorter than that optimized for helium-vapor cooling between 4.2 K and room temperature.mperature.

2단냉동기로 전도냉각되는 HTS전류도입선의 열역학 설계 (Thermodynamic Design of HTS Current Leads Conduction-Cooled by 2-Stage Cryocooler)

  • 장호명
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.198-201
    • /
    • 1999
  • An optimal cooling method for HTS(high Tc superconductor) current leads has been analytically sought to minimize the required refrigerator power. The binary current lead is a series combination of a normal metal conductor at the warmer part and an HTS at the colder part. The lead is cooled by direct contacts with a two-stage cryocooler at the joint and at the cold end. It is clearly proven that there exists unique optimal values for the joint temperature and the current density to minimize the refrigerator power per unit current. the actual power input to the cryocooler in the optimal conditions is compared with its thermodynamic limit, and some significant issues in practical design are presented with a useful graphical method.

  • PDF

A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

  • Han, Seunghak;Nam, Seokho;Lee, Jeyull;Song, Seunghyun;Jeon, Haeryong;Baek, Geonwoo;Kang, Hyoungku;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.44-48
    • /
    • 2017
  • Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

민감부하 보상용 1 MJ 초전도 에너지저장 시스템 제작 및 시험 (Fabrication and Test of a 1 MJ Superconducting Energy Storage System for the Sensitive Load)

  • 성기철;유인근;한성룡;정희종
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권2호
    • /
    • pp.39-43
    • /
    • 2001
  • For several decades researches and development on superconducting magnetic energy storage(SMES) system have been done for efficient electric power management. Korea Electrotechnology Research Institute (KERI) have developed of a 1MJ , 300kVA SMES System for improving power quality in sensitive electric loads. It consists of an IGBT (Insulated Gate Bipolar Transistor) based power conversion module. NbTi mixed matrix conductor superconducting magnet and a cryostat with HTS current leads. We developed the code fro design of a SMES magnet. Which could find the parameters of the SMES magnet having minimum amount of superconductors for the same store denerby. and designed the 1 MJ SMES magnet by using it . And we have design and fabricated cryostat with kA class HTS current leads for a 1 MJ SMES System. This paper describes the design fabrication and test results for a 1MJ SMES System.

  • PDF

SMES 마그네트용 고온초전도 전류도입선 설계 (Design of HTS Current Lead for SMES Magnet)

  • 장현만;오상수;조전욱;조영식;하홍수;하동우;성기철;권영길;류강식;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권2호
    • /
    • pp.6-10
    • /
    • 2000
  • 1.5 kA class HTS current leads for a SMES magnet, which are connected to a conventional vapor cooled copper leads, were designed. The HTS leads are composed of Bi-2223/Ag-Au tapes and a stainless stell tube. The estimated critical current of the lead is about 1.6 kA at 77.3 K and in a self magnetic field, and the heat input to the liquid helium from the cold end of the 35 cm lead is 0.4 W/lead. It has been made clear that the heat input decreases with increase of the lead length and decrease of the warm end temperature and Ag-Au/SC ratio.

  • PDF

A Rotating Flux Pump Employing a Magnetic Circuit and a Stabilized Coated Conductor HTS Stator

  • Jiang, Z.;Bumby, C.W.;Badcock, R.A.;Long, N.J.;Sung, H.J.;Park, M.
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.239-243
    • /
    • 2016
  • High temperature superconductor (HTS) magnet systems usually employ metal current leads which bridge between the cryogenic environment and room temperature. Such current leads are the dominant heat load for these magnet systems due to a combination of electrical resistance and heat conduction. HTS flux pumps enable large currents to be injected into a HTS magnet circuit without this heat load. We present results from an axial-type HTS mechanically rotating flux pump which employs a ferromagnetic circuit and a Cu-stabilized coated conductor (CC) HTS stator. We show the device can be described by a simple circuit model which was previously used to describe barrel-type flux pumps, where the model comprises an internal resistance due to dynamic resistance and a DC voltage source. Unlike previously reported devices, we show the internal resistance and DC voltage in the flux pump are not exactly proportional to frequency, and we ascribe this to the presence of eddy currents. We also show that this axial-type flux pump has superior current injection capability over barrel-type flux pumps which do not incorporate a magnetic circuit.

극저온 냉동기로 냉각되는 이중전류도입선의 최적설계 (Optimal design of binary current leads cooled by cryogenic refrigerator)

  • 송성재;장호명
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

SMES용 고온초전도 전류도입선의 전자계 해석 및 형상설계 (The Electromagnetic Field Analysis and the Design of HTS Current Lead for SMES)

  • 장현만;오상수;조영식;조전욱;하홍수;하동우;권영길;성기철;류강식
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.136-138
    • /
    • 2000
  • 1.5kA HTS current leads for a superconducting magnetic energy storage(SMES) magnet, which are connected to a conventional vapor cooled copper leads, were designed. The HTS lead composed of cylindrically arranged Bi-2223/Ag-1 at5Au tapes and a stainless steel tube. The minimum operating current of the lead is 1.71 kA at 77.3K, self magnetic field, and the heat input to the liquid helium from the clod end of the 36 cm lead is 0.5 W/lead.

  • PDF