• 제목/요약/키워드: -omics

검색결과 204건 처리시간 0.024초

Implementation of Proteomics for Cancer Research: Past, Present, and Future

  • Karimi, Parisa;Shahrokni, Armin;Nezami Ranjbar, Mohammad R.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2433-2438
    • /
    • 2014
  • Cancer is the leading cause of the death, accounts for about 13% of all annual deaths worldwide. Many different fields of science are collaborating together studying cancer to improve our knowledge of this lethal disease, and find better solutions for diagnosis and treatment. Proteomics is one of the most recent and rapidly growing areas in molecular biology that helps understanding cancer from an omics data analysis point of view. The human proteome project was officially initiated in 2008. Proteomics enables the scientists to interrogate a variety of biospecimens for their protein contents and measure the concentrations of these proteins. Current necessary equipment and technologies for cancer proteomics are mass spectrometry, protein microarrays, nanotechnology and bioinformatics. In this paper, we provide a brief review on proteomics and its application in cancer research. After a brief introduction including its definition, we summarize the history of major previous work conducted by researchers, followed by an overview on the role of proteomics in cancer studies. We also provide a list of different utilities in cancer proteomics and investigate their advantages and shortcomings from theoretical and practical angles. Finally, we explore some of the main challenges and conclude the paper with future directions in this field.

Isolation and Characterization of the Eicosapentaenoic Acid Biosynthesis Gene Cluster from Shewanella sp. BR-2

  • Lee, Su-Jin;Seo, Pil-Soo;Kim, Chul-Ho;Kwon, Oh-Suk;Hur, Byung-Ki;Seo, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.881-887
    • /
    • 2009
  • Forty-four eicosapentaenoic acid (EPA)-producing microbial strains were isolated from the intestines of marine fishes. Among them, one strain showing a maximum level of EPA (4.78% of total fatty acids) was identified as Shewanella sp. BR-2 on the basis of its 168 rRNA sequence. The EPA content reached a maximum level during the mid-exponential phase of cell growth, and gradually decreased with further growth of the cells. A cosmid DNA including the EPA biosynthesis gene cluster consisting of pfaA-E was isolated from a cosmid library of genomic DNA of Shewanella sp. BR-2, named pCosEPA-BR2. An E. coli clone harboring pCosEPA-BR2 produced EPA at a maximum level of 7.5% of total fatty acids, confirming the EPA biosynthesis activity of the cloned gene cluster.

시스템 생리학에 기반한 한열 변증의 이해 (Understanding Cold and Hot Pattern Classification Based on Systems Biology)

  • 이수진
    • 동의생리병리학회지
    • /
    • 제30권6호
    • /
    • pp.376-384
    • /
    • 2016
  • Systems biology is an emerging field aiming at a systems level understanding of living organisms and focusing on the characteristics of the whole network of them. The emergence of systems biology is partly because of the availability of huge amounts of data on organisms and the extensive support of computational technologies as the tools for understanding complex biological systems. The scientific understanding of Korean medicine has been obstructed because of the lack of proper methods examining the complex nature and the unique property of it. However, systems biology could give a chance understanding Korean medicine objectively and scientifically. Pattern classification is a unique tool of Korean medicine to diagnose and treat patients and systems biology would give a useful tool to interpret pattern classification. Various omics technologies has been used to explain the relations between pattern classification and biological factors and then many characteristics of pattern classification in various diseases have been discovered. Therefore, pattern classification could be a bridge to understand the features and differences of western medicine and Korean medicine and it could be a basis to develop pattern-based personalized medicine.

Metagenomic and Proteomic Analyses of a Mangrove Microbial Community Following Green Macroalgae Enteromorpha prolifera Degradation

  • Wu, Yijing;Zhao, Chao;Xiao, Zheng;Lin, Hetong;Ruan, Lingwei;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2127-2137
    • /
    • 2016
  • A mangrove microbial community was analyzed at the gene and protein levels using metagenomic and proteomic methods with the green macroalgae Enteromorpha prolifera as the substrate. Total DNA was sequenced on the Illumina HiSeq 2000 PE-100 platform. Two-dimensional gel electrophoresis in combination with liquid chromatography tandem mass spectrometry was used for proteomic analysis. The metagenomic data revealed that the orders Pseudomonadales, Rhizobiales, and Sphingomonadales were the most prevalent in the mangrove microbial community. By monitoring changes at the functional level, proteomic analyses detected ATP synthase and transporter proteins, which were expressed mainly by members of the phyla Proteobacteria and Bacteroidetes. Members of the phylum Proteobacteria expressed a high number of sugar transporters and demonstrated specialized and efficient digestion of various glycans. A few glycoside hydrolases were detected in members of the phylum Firmicutes, which appeared to be the main cellulose-degrading bacteria. This is the first report of multiple "omics" analysis of E. prolifera degradation. These results support the fact that key enzymes of glycoside hydrolase family were expressed in large quantities, indicating the high metabolic activity of the community.

Comprehensive Analysis of Proteomic Differences between Escherichia coli K-12 and B Strains Using Multiplexed Isobaric Tandem Mass Tag (TMT) Labeling

  • Han, Mee-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.2028-2036
    • /
    • 2017
  • The Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for scientific research and biotechnological applications. However, omics analyses have revealed that E. coli K-12 and B exhibit notably different genotypic and phenotypic attributes, even though they were derived from the same ancestor. In a previous study, we identified a limited number of proteins from the two strains using two-dimensional gel electrophoresis and tandem mass spectrometry (MS/MS). In this study, an in-depth analysis of the physiological behavior of the E. coli K-12 and B strains at the proteomic level was performed using six-plex isobaric tandem mass tag-based quantitative MS. Additionally, the best lysis buffer for increasing the efficiency of protein extraction was selected from three tested buffers prior to the quantitative proteomic analysis. This study identifies the largest number of proteins in the two E. coli strains reported to date and is the first to show the dynamics of these proteins. Notable differences in proteins associated with key cellular properties, including some metabolic pathways, the biosynthesis and degradation of amino acids, membrane integrity, cellular tolerance, and motility, were found between the two representative strains. Compared with previous studies, these proteomic results provide a more holistic view of the overall state of E. coli cells based on a single proteomic study and reveal significant insights into why the two strains show distinct phenotypes. Additionally, the resulting data provide in-depth information that will help fine-tune processes in the future.

BioCC: An Openfree Hypertext Bio Community Cluster for Biology

  • Gong Sung-Sam;Kim Tae-Hyung;Oh Jung-Su;Kwon Je-Keun;Cho Su-An;Bolser Dan;Bhak Jong
    • Genomics & Informatics
    • /
    • 제4권3호
    • /
    • pp.125-128
    • /
    • 2006
  • We present an openfree hypertext (also known as wiki) web cluster called BioCC. BioCC is a novel wiki farm that lets researchers create hundreds of biological web sites. The web sites form an organic information network. The contents of all the sites on the BioCC wiki farm are modifiable by anonymous as well as registered users. This enables biologists with diverse backgrounds to form their own Internet bio-communities. Each community can have custom-made layouts for information, discussion, and knowledge exchange. BioCC aims to form an ever-expanding network of openfree biological knowledge databases used and maintained by biological experts, students, and general users. The philosophy behind BioCC is that the formation of biological knowledge is best achieved by open-minded individuals freely exchanging information. In the near future, the amount of genomic information will have flooded society. BioGG can be an effective and quickly updated knowledge database system. BioCC uses an opensource wiki system called Mediawiki. However, for easier editing, a modified version of Mediawiki, called Biowiki, has been applied. Unlike Mediawiki, Biowiki uses a WYSIWYG (What You See Is What You Get) text editor. BioCC is under a share-alike license called BioLicense (http://biolicense.org). The BioCC top level site is found at http://bio.cc/

Computational identification of significantly regulated metabolic reactions by integration of data on enzyme activity and gene expression

  • Nam, Ho-Jung;Ryu, Tae-Woo;Lee, Ki-Young;Kim, Sang-Woo;Lee, Do-Heon
    • BMB Reports
    • /
    • 제41권8호
    • /
    • pp.609-614
    • /
    • 2008
  • The concentrations and catalytic activities of enzymes control metabolic rates. Previous studies have focused on enzyme concentrations because there are no genome-wide techniques used for the measurement of enzyme activity. We propose a method for evaluating the significance of enzyme activity by integrating metabolic network topologies and genome-wide microarray gene expression profiles. We quantified the enzymatic activity of reactions and report the 388 significant reactions in five perturbation datasets. For the 388 enzymatic reactions, we identified 70 that were significantly regulated (P-value < 0.001). Thirty-one of these reactions were part of anaerobic metabolism, 23 were part of low-pH aerobic metabolism, 8 were part of high-pH anaerobic metabolism, 3 were part of low-pH aerobic reactions, and 5 were part of high-pH anaerobic metabolism.

북극 지의류에서 분리한 Caballeronia sordidicola균주 PAMC 26592의 유전체 서열 분석 (Genome sequence of Caballeronia sordidicola strain PAMC 26592 isolated from an arctic lichen species)

  • 김정희;권개경;김병권;홍순규;오현명
    • 미생물학회지
    • /
    • 제53권1호
    • /
    • pp.64-66
    • /
    • 2017
  • Caballeronia sordidicola strain PAMC 26592 was isolated from Umbilicaria sp., a lichen material collected from Svalbard Archipelago in the Arctic Ocean. We report the draft genome sequence of the strain PAMC 26592, a metabolic generalist. As we have observed in previous genomic studies in the genus Caballeronia draft genomic sequences of PAMC 26592 had an assortment of genes of ecological importance and of bio-technical potentials, which include diverse metabolic genes for carbohydrates, aromatic compounds, amino acids, and vitamins, and genes for nitrogen / sulfur metabolisms, stress responses, membrane transporters, antibiotic resistance, and heavy metal resistance.

Perspectives on Clinical Informatics: Integrating Large-Scale Clinical, Genomic, and Health Information for Clinical Care

  • Choi, In Young;Kim, Tae-Min;Kim, Myung Shin;Mun, Seong K.;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.186-190
    • /
    • 2013
  • The advances in electronic medical records (EMRs) and bioinformatics (BI) represent two significant trends in healthcare. The widespread adoption of EMR systems and the completion of the Human Genome Project developed the technologies for data acquisition, analysis, and visualization in two different domains. The massive amount of data from both clinical and biology domains is expected to provide personalized, preventive, and predictive healthcare services in the near future. The integrated use of EMR and BI data needs to consider four key informatics areas: data modeling, analytics, standardization, and privacy. Bioclinical data warehouses integrating heterogeneous patient-related clinical or omics data should be considered. The representative standardization effort by the Clinical Bioinformatics Ontology (CBO) aims to provide uniquely identified concepts to include molecular pathology terminologies. Since individual genome data are easily used to predict current and future health status, different safeguards to ensure confidentiality should be considered. In this paper, we focused on the informatics aspects of integrating the EMR community and BI community by identifying opportunities, challenges, and approaches to provide the best possible care service for our patients and the population.