• Title/Summary/Keyword: -cyclodextrin

Search Result 573, Processing Time 0.023 seconds

Hydrophobic Cyclodextrin Derivatives as a Sustained Release Carrier of Azidothymidine (아지도싸이미딘의 지속성방출형담체로서의 소수성시클로덱스트린유도체)

  • Seo, Bo-Youn;Park, Gee-Bae;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 1996
  • This study has been undertaken to evaluate hydrophobic cyclodextrin(CD) derivatives as a sustained release carrier of azidothymidine(AZT), AZT, which has potent activity against AIDS and AIDS-related complex as thymidine analogue, has been reported that it has significant toxicity and short half life. Therefore, it is necessary to design sustained release oral dosage form to avoid undesirable side effects attributable to an excessive plasma concentration and to reduce the frequency of administration of AZT. Inclusion complexes of AZT with $acetyl-{\beta}-cyclodextrin\;(AC{\beta}CD)$ and $triacetyl-{\beta}-cyclodextrin(TA{\beta}CD)$ were prepared by solvent evaporation method. Interactions of AZT with CD were investigated by Differential Scanning Calorimetry(DSC) and Infrared Spectrophotometry(IR). The decreasing order of water solubilities of AZT and AZT-CD inclusion complexes were as follows; $AZT\;(27.873{\pm}0.015,mg/ml)\;>\;AZT-AC{\beta}CD\;(3.377{\pm}0.003)\;>\;AZT-TA{\beta}CD\;(2.528{\pm}0.001)$. Partition coefficients of $AZT-AC{\beta}CD\;and;\AZT-TA{\beta}CD$ inclusion complexes were increased by 1.27-fold, 1.54-fold in pH 1.2 and 1.32-fold, 1.47-fold in pH 6.8 in comparison with that of AZT. The mean dissolution time (MDT, min) which represents the rapidity of dissolution rate of AZT, $AZT-AC{\beta}CD,\;AZT-TA{\beta}CD$ were 5.12, 14.02 and 19.38 min in pH 1.2 and 2.52, 15.19 and 18.19 min in pH 6.8. AZT was very rapidly and completely dissolved in pH 1.2 and pH 6.8 within 5 minutes. But AZT-CD inclusion complexes showed the sustained release pattern in comparison with AZT alone. The simultaneous in situ nasal and jejunal recirculation study to compare the intrinsic absorptivity and the property of absorption sites revealed that the absorption of $AZT-TA{\beta}CD\;(N:35.35{\pm}1.08%,\;J:27.47{\pm}1.18%)$ was more than that of $AZT\;(N:16.89{\pm}2.25%,\;J:15.86{\pm}2.33%)$. The above results suggest that $TA{\beta}CD$ which is a hydrophobic cyclodextrin may serve as sustained release carrier with absorption enhancing effect.

  • PDF

Effect of 2-hydroxypropyl-$\beta$-cyclodextrin on Biodegradation of High-Molecular Weight Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromtivorans US6-1 (Novosphingobium pentaromtivorans US6-1에 의한 고분자 방향족 탄화수소 생분해과정에서 2-hydroxypropyl-$\beta$-cyclodextrin의 영향)

  • Kang Ji-Hyun;Kwon Kae Kyoung;Kim Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.146-151
    • /
    • 2004
  • Cyclodextrin compounds including 2-hydroxypropyl-β-cyclodextrin(β-HPCD) though to be accelerate the biodegradation of PAHs molecule by increasing solubility of PAHs through detaining PAHs in their's cavity. However, only this mechanism is not sufficient to explain the enhancement of PAHs biodegradation by β-HPCD. To find out possible additional role of β-HPCD in the enhancement of PAHs biodegradation, biodegradation rates of pyrene and benzo[a]pyrene (B[a]P) by a PAHs degrading Novosphingobium pentaromtivorans US6-1 strain were compared between with and without addition of β-HPCD. Changes of bacterial biomass were also measured simultaneously. In addition catechol 1,2-dioxygenase activity was determined depending on pre-incubation conditions. As a result, β-HPCD accelerate the degradation rate of pyrene by strain US6-1 and especially the β-HPCD amendment was obligatory for the degradation of B[a]p. Bacterial biomass was responsible for β-HPCD, however, PAHs compounds such as pyrene and B[a]P did not contribute to the bacterial biomass. Catechol 1,2-dioxygenase specific activity of US6-l cells pre-cultured in MM2 medium containing l% β-HPCD was higher than that of cells pre-cultured in ZoBell medium. The former case also showed similar activity compared to that of cells serially starved in MM2 medium after grown in ZoBell medium. These results imply that the presence of β-HPCD accelerate the degradation of PAHs by increasing the bacterial biomass as well as by increasing the water solubility of PAHs.

  • PDF

Effect of Oligosaccharide Addition on Gelatinization and Retrogradation of Backsulgies (올리고당 첨가가 백설기의 호화와 노화에 미치는 영향)

  • 유지나;김영아
    • Korean journal of food and cookery science
    • /
    • v.17 no.2
    • /
    • pp.156-164
    • /
    • 2001
  • Four different oligosaccharides used to determine their effects on gelatinization and retrogradation of Backsulgies(BSG), Korean traditional rice cake, were cyclodextrin, isomaltooligosaccharide, fructooligosaccharide and maltotetrose, with 3 or 6%(w/w), based on the rice flour. From the Amylograph and blue value data, adding 6% cyclodextrin into the rice flour fastened the gelatinzation process, and delayed the retrogradation in stored BSG at 4$\^{C}$ for up to 3 days, probably due to its cyclic structure. Using rheometer, the hardness of freshly made BSG added with cyclodextrin was significantly lower than that of control BSG, and increased with storage time in all BSGs at refrigerated temperature. When using maltotetrose in rice flour, the hardness of BSG was also significantly low, but slightly higher than that of cyclodextrin. Hunter “L” value in BSG decreased with the addition of oligosaccharides, but the higher the level of oligosaccharide in BSG, the insignificant the Hunter “a”,“b” values of BSG. From the X-ray diffraction studies, the rice flour showed typical A pattern, and the crystallinities of all BSG gave amorphous V type. The highest peaks of X-ray patterns in BSG added with 6% cyclodextrin or maltotetrose were, however, lower than that of the control, meaning the less crystalline, retrograded starch in the former BSGs. Based on sensory evaluation, BSG added with all oligosacchrides were not significantly different in taste, flavor, chewiness, moistness and overall preferences, with slightly darker color with longer storage time, compared to the control BSG.

  • PDF

The Effect of Antifat Diets with β-Cyclodextrin on the Weight Loss in Obese Korean Women (비만 여성에서 베타-사이클로덱스트린 함유 다이어트 식품의 체중 감소 효과)

  • 박병성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.832-838
    • /
    • 2004
  • This study investigated the effects of an antifat diet with $\beta$-cyclodextrin on the reduction of body weight, obesity index, body mass index, body fat mass, body circumferences and plasma lipid levels in obese Korean women. After maintaining an antifat diet for 45 days, there were significant reductions in body weight by 4 kg, obesity index by 5%, body mass index by 1 kg/$m^2$ and body fat mass by 7% as absolute values (p<0.05). When expressed as percentages of the decrease, these reductions remained significant at 4%, 13%, 4% and 20%, respectively (p<0.05). In addition, after maintaining this antifat diet for 45 days, there were also significant reductions in arm, waist, hip and thigh circumferences by 3 cm as absolute values when compared to before intake of antifat diet, and these reductions remained significant at 8%, 3.4%, 3% and 5%, respectively (p<0.05) as percentages of the decrease. Furthermore, this antifat diet significantly reduced triacylglyceride by 103 mg/dL, total cholesterol by 50 mg/dL and LDL-C by 50 mg/dL respectively (p<0.05). Thus, the present results demonstrate that $\beta$-cyclodextrin may have benefit as a novel food resource for diets to prevent obesity and control overweight in adult women.

The Mitigation of Bitterness of Zipeprol Solution (Zipeprol 내용액제의 고미교정에 관한 연구)

  • 김종국;최한곤
    • YAKHAK HOEJI
    • /
    • v.31 no.1
    • /
    • pp.42-44
    • /
    • 1987
  • Ziperol, anti-tussive, is considerably bitter. Therefore, it is necessary to mitigate the bitterness in ziperol syrup for children. In this experiment, it was attempted to mitigate the bitterness of zipeprol by means of polymers such as $\beta$-cyclodextrin, arabic gum, HPMC(hydroxypropyl methylcellulose), PEG 2000(polyethyleneglycol 2000), PVP(polyvinylpyrrolidone). Caffeine was used as the reference standard of bitterness. In the result of this experiment, $\beta$-cyclodextrin, would mitigate the bitterness of zipeprol more largely than any other polymers. Arabic gum was the second choice which would mitigate the bitterness of zipeprol.

  • PDF

Expression and Application of Heterologous Genes in Saccharomyces cerevisiae

  • Nam Soo-Wan
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.122-124
    • /
    • 2003
  • Cyclodextrin glucanotransferase (CGTase) and endoxylanase genes of Bacillus sp. were subcloned down-stream of yeast ADH1 promoter and expressed in S. cerevisiae. Most of the CGTase and endoxylanase expressed were detected in the extracellular medium with activity of 0.6 and 7-8 unit/ml, respectively. The recombinant enzymes were secreted as N-linked-glycosylated forms, resulting an enhanced thermal stability. CGTase predominantly produced $\alpha-cyclodextrin$ from starch and endoxylanase produced xylobiose and xylotriose from xylan.

  • PDF

$\beta$-Cyclodextrin 유도체의 합성과 응용

  • 고재훈;정용식;유제안;김진우
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.325-328
    • /
    • 1998
  • $\beta$-cyclodextrin($\beta$-CD)은 cycloheptaamylose라고도 하며 $D^{<+>}$-glucopyranose 단위체가 7개 연결된 구조를 가지고 있다(Fig. 1). $\beta$-CD는 고리모양으로 되어있는데 외부는 친수성, 내부는 소수성을 갖는다[1]. 고리내 부가 소수성인 이유는 내부에 소수성기인 C-H그룹과 glucosidic oxygen만이 존재하기 때문이다[1].(중략)

  • PDF

Inclusion Complexation of Clonixin with Cyclodextrins (클로닉신과 시클로덱스트린과의 포접복합체 형성)

  • Park, Sun-Joo;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.283-289
    • /
    • 1995
  • The aim of this study is to increase the solubility and dissolution rate of clonixin by inclusion complex formation. Inclusion complexes of clonixin, a non-steroidal antiinflammatory drug, with ${\beta]-cyclodextrin$ were $2-hydrolrypropyl-{\beta]-cyclodextrin$ were prepared by freeze drying method. Inclusion complex formation of clonixin with cyclodextrins was determined by UV, IR and DSC. The apparent stability constants were calculated from the phase solubility diagrams. Dissolution rate and solubility of clonixin in water markedly increased by the complex formation.

  • PDF