• Title/Summary/Keyword: -Lipschitz

Search Result 297, Processing Time 0.023 seconds

EXISTENCE AND UNIQUENESS OF SQUARE-MEAN PSEUDO ALMOST AUTOMORPHIC SOLUTION FOR FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY G-BROWNIAN MOTION

  • A.D. NAGARGOJE;V.C. BORKAR;R.A. MUNESHWAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.923-935
    • /
    • 2023
  • In this paper, we will discuss existence of solution of square-mean pseudo almost automorphic solution for fractional stochastic evolution equations driven by G-Brownian motion which is given as c0D𝛼𝜌 Ψ𝜌 = 𝒜(𝜌)Ψ𝜌d𝜌 + 𝚽(𝜌, Ψ𝜌)d𝜌 + ϒ(𝜌, Ψ𝜌)d ⟨ℵ⟩𝜌 + χ(𝜌, Ψ𝜌)dℵ𝜌, 𝜌 ∈ R. Furthermore, we also prove that solution of the above equation is unique by using Lipschitz conditions and Cauchy-Schwartz inequality. Moreover, examples demonstrate the validity of the obtained main result and we obtain the solution for an equation, and proved that this solution is unique.

Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces

  • Olawale Kazeem Oyewole;Lateef Olakunle Jolaoso;Kazeem Olalekan Aremu
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.69-94
    • /
    • 2024
  • In this paper, we introduce an inertial self-adaptive projection method using Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive Banach spaces. The algorithm requires only one projection onto the feasible set without any Lipschitz-like condition on the bifunction. Using this method, a strong convergence theorem is proved under some mild conditions. Furthermore, we include numerical experiments to illustrate the behaviour of the new algorithm with respect to the Bregman function and other algorithms in the literature.

A NEW RELAXED TSENG METHOD FOR FINDING A COMMON SOLUTION OF FIXED POINT AND SPLIT MONOTONE INCLUSION PROBLEMS

  • Lusanda Mzimela;Akindele Adebayo Mebawondu;Adhir Maharaj;Chinedu Izuchukwu;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.225-258
    • /
    • 2024
  • In this paper, we study the problem of finding a common solution to a fixed point problem involving a finite family of ρ-demimetric operators and a split monotone inclusion problem with monotone and Lipschitz continuous operator in real Hilbert spaces. Motivated by the inertial technique and the Tseng method, a new and efficient iterative method for solving the aforementioned problem is introduced and studied. Also, we establish a strong convergence result of the proposed method under standard and mild conditions.

MATHEMATICAL ANALYSIS OF CONTACT PROBLEM WITH DAMPED RESPONSE OF AN ELECTRO-VISCOELASTIC ROD

  • LAHCEN OUMOUACHA;YOUSSEF MANDYLY;RACHID FAKHAR;EL HASSAN BENKHIRA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.305-320
    • /
    • 2024
  • We consider a mathematical model which describes the quasistatic contact of electro-viscoelastic rod with an obstacle. We use a modified Kelvin-Voigt viscoelastic constitutive law in which the elasticity operator is nonlinear and locally Lipschitz continuous, taking into account the piezoelectric effect of the material. We model the contact with a general damped response condition. We establish a local existence and uniqueness result of the solution by using arguments of time-dependent nonlinear equations and Schauder's fixed-point theorem and obtain a global existence for small enough data.

DEGREE OF APPROXIMATION OF A FUNCTION ASSOCIATED WITH HARDY-LITTLEWOOD SERIES IN WEIGHTED ZYGMUND W(Z(𝜔)r)-CLASS USING EULER-HAUSDORFF SUMMABILITY MEANS

  • Tejaswini Pradhan;G V V Jagannadha Rao
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1035-1049
    • /
    • 2023
  • Approximation of functions of Lipschitz and Zygmund classes have been considered by various researchers under different summability means. In the proposed study, we investigated an estimation of the order of convergence of a function associated with Hardy-Littlewood series in the weighted Zygmund class W(Z(𝜔)r)-class by applying Euler-Hausdorff summability means and subsequently established some (presumably new) results. Moreover, the results obtained here represent the generalization of several known results.

ACCELERATED STRONGLY CONVERGENT EXTRAGRADIENT ALGORITHMS TO SOLVE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REAL HILBERT SPACES

  • Nopparat Wairojjana;Nattawut Pholasa;Chainarong Khunpanuk;Nuttapol Pakkaranang
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.307-332
    • /
    • 2024
  • Two inertial extragradient-type algorithms are introduced for solving convex pseudomonotone variational inequalities with fixed point problems, where the associated mapping for the fixed point is a 𝜌-demicontractive mapping. The algorithm employs variable step sizes that are updated at each iteration, based on certain previous iterates. One notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without necessitating any line search procedures. The iterative sequence constructed demonstrates strong convergence to the common solution of the variational inequality and fixed point problem under standard assumptions. In-depth numerical applications are conducted to illustrate theoretical findings and to compare the proposed algorithms with existing approaches.

ON SEMILOCAL CONVERGENCE OF A MULTIPOINT THIRD ORDER METHOD WITH R-ORDER (2 + p) UNDER A MILD DIFFERENTIABILITY CONDITION

  • Parida, P.K.;Gupta, D.K.;Parhi, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.399-416
    • /
    • 2013
  • The semilocal convergence of a third order iterative method used for solving nonlinear operator equations in Banach spaces is established by using recurrence relations under the assumption that the second Fr´echet derivative of the involved operator satisfies the ${\omega}$-continuity condition given by $||F^{\prime\prime}(x)-F^{\prime\prime}(y)||{\leq}{\omega}(||x-y||)$, $x,y{\in}{\Omega}$, where, ${\omega}(x)$ is a nondecreasing continuous real function for x > 0, such that ${\omega}(0){\geq}0$. This condition is milder than the usual Lipschitz/H$\ddot{o}$lder continuity condition on $F^{\prime\prime}$. A family of recurrence relations based on two constants depending on the involved operator is derived. An existence-uniqueness theorem is established to show that the R-order convergence of the method is (2+$p$), where $p{\in}(0,1]$. A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach and comparisons are elucidated with a known result.

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

Image Enhancement Techniques Based on Wavelets (웨이블릿을 이용한 영상개선 기법)

  • 이해성;변혜란;유지상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1400-1412
    • /
    • 2000
  • In this paper, we propose a technique for image enhancement, especially for denoising and deblocking based on wavelets. In this proposed algorithm, frame wavelet system designed as a optimal edge detector was used. And our theory depends on Lipschitz regularity, spatial correlation, and some important assumptions. The performance of the proposed algorithm was compared with three popular test images in image processing area. Experimental results show that the performance of the proposed algorithm was better than other previous denoising techniques like spatial averaging filter, Gaussian filter, median filter, Wiener filter, and some other wavelet based filters in the aspect of both PSNR and human visual system, The experimental results also show approximately the same capability of deblocking as the previous developed techniques

  • PDF

GENERALIZED SYSTEMS OF RELAXED $g-{\gamma}-r-COCOERCIVE$ NONLINEAR VARIATIONAL INEQUALITIES AND PROJECTION METHODS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Approximation solvability of a system of nonlinear variational inequality (SNVI) problems, based on the convergence of projection methods, is given as follows: find elements $x^*,\;y^*{\in}H$ such that $g(x^*),\;g(y^*){\in}K$ and $$<\;{\rho}T(y^*)+g(x^*)-g(y^*),\;g(x)-g(x^*)\;{\geq}\;0\;{\forall}\;g(x){\in}K\;and\;for\;{\rho}>0$$ $$<\;{\eta}T(x^*)+g(y^*)-g(x^*),\;g(x)-g(y^*)\;{\geq}\;0\;{\forall}g(x){\in}K\;and\;for\;{\eta}>0,$$ where T: $H\;{\rightarrow}\;H$ is a relaxed $g-{\gamma}-r-cocoercive$ and $g-{\mu}-Lipschitz$ continuous nonlinear mapping on H and g: $H{\rightarrow}\;H$ is any mapping on H. In recent years general variational inequalities and their algorithmic have assumed a central role in the theory of variational methods. This two-step system for nonlinear variational inequalities offers a great promise and more new challenges to the existing theory of general variational inequalities in terms of applications to problems arising from other closely related fields, such as complementarity problems, control and optimizations, and mathematical programming.

  • PDF