• Title/Summary/Keyword: 힘 동기제어

Search Result 13, Processing Time 0.015 seconds

Force Fighting Suppressive Technique of Dual Redundant Asymmetric Tandem Electro-Hydrostatic Actuator for Aircraft (항공기용 이중화 비대칭형 직렬 전기-정유압 구동기의 Force Fighting 억제 기법)

  • Song, Woo Keun;Kim, Sang Seok;Choi, Jeong Seok;Lee, JungUn;Lee, Jong Cheol;Lee, Jun won;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.62-69
    • /
    • 2022
  • EHA (Electro-Hydrostatic Actuator) is more energy efficiency than a centralized hydraulic system. In particular, the EHA used for aircraft has a redundant design in preparation for failure scenario. Also, due to the aircraft's internal space limitation, the actuator's length must be optimized. Therefore, a series configuration of double rod and single rod cylinder is advantageous. However, due to the asymmetry of the cross-sectional area of the piston, the force fighting phenomenon between the two cylinder areas occurs during redundant operation with a general control system. In this paper, the force fighting phenomenon of redundant EHA was simulated. A controller with load compensation and a force control-based position controller as a method to suppress its stimulation

Force Tracking Control of a Smart Flexible Gripper Featuring Piezoceramic Actuators (압전 세라믹 작동기로 구성된 스마트 유연 그리퍼의 힘 추적 제어)

  • Choi, Seung-Bok;Cheong, Chae-Cheon;Lee, Chul-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • This paper presents a robust force tracking control of a smart flexible gripper featured by a piezoceramic actuator characterizing its durability and quick response time. A mathematical governing equation for the proposed gripper structure is derived by employing Hamilton's principle and a state space control model is subsequently obtained through model analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theory which has inherent robustness to the sys- tem uncertainties is adopted to design a force tracking controller for the piezoceramic actuator. Using out- put information from the tip force sensor, a full-order observer is constructed to estimate state variables of the system. Force tracking performances for desired trajectories represented by sinusoidal and step func- tions are evaluated by undertaking both simulation and experimental works. In addition, in order to illustrate practical feasibility of the proposed method, a two-fingered gripper is constructed and its performance is demonstrated by showing a capability of holding an object.

  • PDF

A Brake Pad Wear Compensation Method and Performance Evaluation for ElectroMechanical Brake (전기기계식 제동장치의 제동패드 마모보상방법 및 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Choon-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.581-588
    • /
    • 2020
  • This study examined a brake pad wear compensation method for an Electro-Mechanical Brake (EMB) using the braking test device. A three-phase Interior Permanent Magnet Synchronous Motor (IPMSM) was applied to drive the actuator of an EMB. Current control, speed control, and position control were used to control the clamping force of the EMB. The wear compensation method was performed using a software algorithm that updates the motor model equation by comparing the motor output torque current with a reference current. In addition, a simple first-order motor model equation was applied to estimate the output clamping force. The operation time to the maximum clamping force increased within 0.1 seconds compared to the brake pad in its initial condition. The experiment verified that the reference operating time was within 0.5 seconds, and the maximum value of the clamping force was satisfied under the wear condition. The wear compensation method based on the software algorithm in this paper can be performed in the pre-departure test of rolling stock.