• Title/Summary/Keyword: 힘 다각형

Search Result 4, Processing Time 0.019 seconds

Analysis of the Three-Roll Power Spinning Process by using the Method of Force Polygon Diagram (힘다각형선도법을 이용한 세롤에 의한 파워스피닝공정의 해석)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.3
    • /
    • pp.47-58
    • /
    • 1985
  • The study is concerned with the analysis of the required loads and torque in the Three-Roll Power Spinning Process by using the Method of Force Polygon Diagram. Experiments are carried out using pure lead billets at room temperature. The radial force, the axial force and the torque occurring during the process are calculated theoretically and are compared with the experimental data. An approximate load distribution is known by the Force Polygon Diagram.

  • PDF

Preliminary Structural Form Planning for Suspension Bridge According to Force Flow (힘의 흐름을 따르는 현수교의 초기 구조형태계획)

  • Kim, Namhee;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1315-1326
    • /
    • 2013
  • Geometric form of a suspension bridge that uses load-sensitive cables takes on not only resisting loads but also becoming a visually sensible shillouette. This study has proposed a preliminary structural form planning for a suspension bridge following force flow by adopting the two possibilities of the graphic statics. First, the force polygon allows alternative load paths for the same loading condition. Second, a new structural form for the newly developed load path can be constructed using the reciprocal principle that exits between a structure space and the corresponding force polygon. Major structural form parameters that affect both structural and aesthetic aspecs are first identified. The relationships between structural forms and the corresponding force polygons are then investigated for the identified parameters. Upon the investigation, a stepwise process is developed for a preliminary structural form planning for a suspension bridge. The proposed structural form planning method is general that can be easily expanded to generate design alternatives of similar form-active structural systems. It is also expected that this method will be used as an educational tool to explain the interrelationships between structural forms and their force flows.

In Newton's proof of the inverse square law, geometric limit analysis and Educational discussion (Newton의 역제곱 법칙 증명에서 기하학적 극한 분석 및 교육적 시사점)

  • Kang, Jeong Gi
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.2
    • /
    • pp.173-190
    • /
    • 2021
  • This study analyzed the proof of the inverse square law, which is said to be the core of Newton's , in relation to the geometric limit. Newton, conscious of the debate over infinitely small, solved the dynamics problem with the traditional Euclid geometry. Newton reduced mechanics to a problem of geometry by expressing force, time, and the degree of inertia orbital deviation as a geometric line segment. Newton was able to take Euclid's geometry to a new level encompassing dynamics, especially by introducing geometric limits such as parabolic approximation, polygon approximation, and the limit of the ratio of the line segments. Based on this analysis, we proposed to use Newton's geometric limit as a tool to show the usefulness of mathematics, and to use it as a means to break the conventional notion that the area of the curve can only be obtained using the definite integral. In addition, to help the desirable use of geometric limits in school mathematics, we suggested the following efforts are required. It is necessary to emphasize the expansion of equivalence in the micro-world, use some questions that lead to use as heuristics, and help to recognize that the approach of ratio is useful for grasping the equivalence of line segments in the micro-world.

Equilibrium Stress Mode Determination of Tensegrity Structure by CAD (CAD를 이용한 텐세그리티 구조물의 평형응력모드 결정법)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.81-88
    • /
    • 2012
  • Cable dome structures are composed of cables-masts and the cables should be in pre-tension since a structure without pre-tension is not stable. Under the pretension, self equilibrium stress state is the main characteristic of a cable dome structure. In this paper, a new method based on the basic principle of closed force polygon for equilibrium system is proposed for the determination of self-equilibrium mode of cable dome structure. The proposed method which is called geometric method has the unique characteristic of visualization of the force mode needed for maintenance of self-equilibrium. The basic theory for a self equilibrium of structure is that the summation of forces at each joint without any external load should be zero. The simplicity of the method which involves only drawing close polygon with the aid of suitable CAD software has been illustrated by means of a example. The results compared with mechanical calculation and existed method and shows good agreement.