• Title/Summary/Keyword: 힘센서

Search Result 319, Processing Time 0.032 seconds

Development of Force Feedback Joystick for Remote Control of a Mobile Robot (이동로봇의 원격제어를 위한 힘 반향 조이스틱의 개발)

  • Suh, Se-Wook;Yoo, Bong-Soo;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The main goal of existing mobile robot system was a complete autonomous navigation and the vision information was just used as an assistant way such as monitoring For this reason, the researches have been going towards sophistication of autonomousness gradually and the production costs also has been risen. However, it is also important to control remotely an inexpensive mobile robot system which has no intelligence at all. Such systems may be much more effective than fully autonomous systems in practice. Visual information from a simple camera and distance information from ultrasonic sensors are used for this system. Collision avoidance becomes the most important problem for this system. In this paper, we developed a force feedback joystick to control the robot system remotely with collision avoiding capability. Fuzzy logic is used for the algorithm in order to implement the expert s knowledge intelligently. Some experimental results show the force feedback joystick werks very well.

Development of Flexible Force Sensor Using Fiber Bragg Grating for Tactile Sensor and Its Evaluation (광섬유 브래그 격자를 이용한 촉각 센서용 유연 단축 힘 센서의 개발 및 평가)

  • Heo, Jin-Seok;Lee, Jung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.51-56
    • /
    • 2006
  • This paper shows the development of flexible force sensor using the fiber Bragg grating. This force sensor consists of a Bragg grating fiber and flexible silicone rubber (DC184, Dow corning co. Ltd). This sensor does not have special structure to maximize the deflection or elongation, but have good sensitivity and very flexible characteristics. In addition, this sensor has the immunity to the electro magnetic field and can be multiplexed easily, which is inherited from the characteristics of fiber Bragg grating sensor. In the future, this sensor can be utilized the tactile sensor system minimizing the sensor size and developing the fabrication method.

A Wearable Glove System for Rehabilitation of Finger Injured Patients (손가락 부상 환자의 재활을 위한 장갑형 웨어러블 시스템)

  • Ji-Hun Seong;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.379-386
    • /
    • 2023
  • When patients suffer from finger injuries, their finger joints can become stiff and inflexible due to decreased ability to exercise the finger tendons. This can lead to a loss of strength and difficulty using their hands. To address this, it is important to provide patients with consistent rehabilitation treatment that can help restore finger flexibility and strength simultaneously. In this study, we propose wearable gloves that use FSRs (force sensitive resistors) for finger strength training. The glove is designed to be adjustable using rubber bands and a custom PCB is designed for signal acquisition. For the evaluation of finger strength training, the result was analyzed in four cases. We suggest a vector that represents the center of five finger forces, and the result shows that the vector can indicate the level of force balance.

Design and Theoretic Analysis of 3D Tactile Sensor (3D 촉각 센서의 설계와 이론적인 해석)

  • Sim Kwee-Bo;Hwang Han-Kun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.870-874
    • /
    • 2005
  • This paper presents capacitive tactile sensor that can detect normal and shear forces. This tactile sensor consists of index plate, sensing plate, and elastic dielectric layer. The calculated sensing character is based on the changes of space between two horizontal plate. Larger overlap areas and narrow space between top and bottom plate guarantees higher sensitivity. Tactile sense information can be calculated from the changes of phase of output signal. The symmetric arrangement of sensing plates makes the manufacturing process easier and guarantees the stability of the structure. In this paper, the sensor structure is designed, the mechanism of the Proposed sensor is theoretically explained, and the simulated result is presented.

Development of the Intelligent Gripper Using Two 3-axis Force Sensor (3 축 힘센서를 이용한 지능형 그리퍼 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.47-54
    • /
    • 2007
  • This paper describes the development of the intelligent gripper with two 3-axis force sensor that can measure forces Fx, Fy, Fz simultaneously, for stably grasping an unknown object. In order to grasp an unknown object using an intelligent gripper softly, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured farces. Thus, the intelligent gripper should be composed of 3-axis force sensor that can measure forces Fx, Fy, Fz at the same time. In this paper, the intelligent gripper with two 3-axis force sensor was manufactured and its characteristic test was carried out. The fabricated gripper could grasp an unknown object stably. Also, the sensing element of 3-axis force sensor was modeled and designed with five parallel-plate beams, and 3-axis force sensor for the intelligent gripper was fabricated. The characteristic test of the made sensor was carried out.

A Study of Development for Contact CMM Probe using Three-Component Force Sensor (3 분력 힘 센서를 이용한 CMM 용 접촉식 프로브의 개발에 관한 연구)

  • 송광석;권기환;박재준;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.101-107
    • /
    • 2003
  • A new mechanical probe for 3-D feature measurement on coordinate measuring machines (CMMs) is presented. The probe is composed of the contact stylus and the three-component force sensor. With the stylus mounted on the force sensor, the probe can not only measure 3-D features, but also detect contact force acting on the stylus tip. Furthermore, the probing direction and the actual contact position can be determined by the relationship among three components of contact force to be detected. In this paper, transformation matrix representing the relationship between the external force acting on the stylus tip and the output voltages of measurement gauges is derived and calibrated. The prototype of probe is developed and its availability is investigated through the experimental setup for calibration test of the probe. A series of experimental results show that the proposed probe can be an effective means of improving the accuracy of touch probing on CMM.

Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor (형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징)

  • Jang, Yoon-Kwan;Suh, Jung-Soo;Suk, Myungeun;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.366-372
    • /
    • 2021
  • Cadherin-Catenin complex is thought to play an essential role in the transmission of force at adherens junction. Due to the lack of proper tools to visualize and detect mechanical force signals, the underlying mechanism by which the cadherin-catenin complex regulates force transmission at intercellular junctions remains elusive. In this study, we visualize cadherin-mediated force transmission using an engineered α-Catenin sensor based on fluorescence resonance energy transfer. Our results reveal that α-catenin is a key force transducer in cadherin-mediated mechanotransduction at cell-cell junctions. Thus, our finding will provide important insights for studying the effects of chemical and physical signals on cell-cell communication and the relationship between physiological and pathological phenomena.