• Title/Summary/Keyword: 히팅 시스템

Search Result 25, Processing Time 0.018 seconds

Development of a Plasma Heater to Increase Cultivation Environment and Storability of Greenhouse and Non-Storage Pool (온실과 무가온저장고의 재배환경 및 저장성 증가를 위한 플라즈마 히터 개발)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.761-768
    • /
    • 2019
  • In this paper, the aim is to develop plasma heater products combining the sterilization and purification functions of low-temperature plasma lamp method with the function of vertical heating system using wavelengths of vacuum magnetic (VU). Through this process, the government aims to improve the cultivation environment of crops in greenhouses or facility houses and to increase their storage capacity by increasing the freshness of stored crops such as free-temperature storage. In addition, real-time monitoring technologies will be incorporated that will enable users to identify and respond to changes within greenhouses in real time by utilizing ICT technologies.

Implementation of Electrical Performance Test Evaluation System for Car Fuel Heater (차량 연료히터의 전기적 성능시험 평가 시스템 구현)

  • Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.63-70
    • /
    • 2013
  • In this paper, we have implemented the performance evaluation system of the unified fuel heater for CRDI diesel engine. If the diesel engine be cold by low temperature in winter, then that makes the waxing materials like a paraffin and is the source of poor engine starting. The unified fuel heater is the barrow meter that estimate the start performance of diesel engine, and be tested by test chamber. The chamber perform the normal temperature, an extremely low temperature, an operating performance in an extremely high temperature, the resistance operation delay time and current operation delay time in setting up test resistance, the bimetal delay time test in temperature variation, the current and resistor test of the composited heater, a heating operation test.

Developing of VOC sensor Signal Processing System using Embedded System on the Web Environment (웹 환경에서 임베디드 시스템을 이용한 VOC센서 원격 신호 모니터링 시스템 개발)

  • Park, Jin-Kwan;Lim, Hae-Jin;Nam, Si-Byung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.375-383
    • /
    • 2011
  • Recent advances in digital technology and diversified internet services have resulted in a rapid growth of research on monitering systems using embedded web servers in USN systems. In designing USN systems equipped with wireless sensor modules requiring extra power for heating sensors for their appropriate operations, excessive power consumption introduces inefficiency to the entire system. In this paper, using embedded systems in web environment, we develop a remote-monitoring system with VOC (Volatile Organic Compounds) sensor signal, and propose a real time method of processing sensor-data streams by way of the serial bus from the sensor module in the USN system. The proposed system has an advantage of monitering the harmful gases on real-time basis and can be used semi-permanently by providing the sensor module with power through the serial bus. The harmful gas to be detected by the VOC sensor module is Toluene and the sensor module is composed of TGS-2602 VOC(Volatile Organic Compounds) sensors of FIGARO. The detected signal is transferred to the embedded web server using the RS-485 serial communication device. The proposed remote VOC monitering system is designed to coordinate in such a way that the VOC sensor module and embedded web server (EMPOS-II) work together effectively for real time monitering of harmful gases on the web at any places where the internet is connected.

Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns (열에너지 저장 암반공동의 형상 및 레이아웃 설계 가이드라인)

  • Park, Dohyun;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • Thermal energy storage (TES) is a technology that stores surplus thermal energy at high or low temperatures for later use when the customer needs it, not just when it is available. TES systems can help balance energy demand and supply and thus improve the overall efficiency of energy systems. Furthermore, the conversion and storage of intermittent renewable resources in the form of thermal energy can help increase the share of renewable resources in the energy mix which refers to the distribution of energy consumption from different sources, and to achieve this, it is essential to combine renewable resources with TES systems. Underground TES using rock caverns, known as cavern thermal energy storage (CTES), is a viable option for large-scale, long-term TES utilization although its applications are limited because of the high construction costs. Furthermore, the heat loss in CTES can significantly be reduced due to the heating of the surrounding rock occurred during long-term TES, which is a distinctive advantage over aboveground TES, in which the heat loss to the surroundings is significantly influenced by climate conditions. In this paper, we introduced important factors that should be considered in the shape and multiple layout design of TES caverns, and proposed guidelines for storage space design.

Fundamental Study on the Strength and Heat Transferring Charcteristic of Cement Composite with Waste CNT (폐CNT를 혼입한 시멘트 복합체의 강도 및 열전달 특성에 대한 기초적 연구)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2022
  • The purpose of this study was to develop self-heating concrete by utilizing the conduction resistance of concrete in order to reduce the risk of occurrence of black ice in the concrete pavement in winter and to prevent damage caused by freez-thawing effect. For this purpose, it was attempted to evaluate the strength and temperature exothermic characteristics using powder and liquid waste CNTs and a waste cathode agent as a conduction promotion. It was analyzed that liquid waste CNT had an effective dispersion degree in the mortar and a small decrease in strength occurred. In addition, DC 24 V was supplied by applying steel mesh, copper foil and copper wire to the mortar as electrodes, and the temperature change characteristics according to the mixing ratio of spent CNTs, anodes and carbon fibers were evaluated. In addition, by evaluating the temperature characteristics according to the electrode spacing from the selected optimal mixture, it was confirmed that it had sufficient heating characteristics up to an electrode spacing of 100 mm up to AC 50 V.