두 개 수신기에 들어오는 신호 간의 시간 지연 값을 추정하기 위한 방법들이 연구되고 있다. 그중에서 채널 추정 기법을 기반으로 한 방법의 경우는 두 수신기의 입력 신호간의 상대적인 지연을 채널의 임펄스 응답처럼 추정하는 방법이다. 이 경우에는 해당 채널의 특성이 희소 채널의 특성을 가지고 있다. 기존의 방법들은 채널의 희소성을 이용하지 못하고 있는 방법이 대부분이다. 본 논문에서는 채널의 희소성을 이용하기 위하여 희소 신호 최적화 방법의 하나인 BPD(Basis Pursuit Denoising) 최적화 기법을 사용한 시간 지연 추정 방법을 제안한다. 제안한 방법을 기존의 일반 상호 상관(Generalized Cross Correlation, GCC) 방법과 적응 소유치 분해법 및 희소 신호 추정법의 일종인 RZA-LMS(Reweighted Zero-Attracting Least Mean Square)들과 비교하여, 백색 가우시안 신호원과 유색 신호원 및 해양 포유류 신호원에 대해서 비교 실험을 하였다. 그 결과 갑자기 추정성능이 열화되는 문턱 현상이 늦게 나타나거나 훨씬 줄어드는 것을 보였다.
서로 떨어져 설치된 두 개의 음향 센서에 도달하는 신호의 상호 지연 시간을 추정하는 것은 실내 음향과 소나 등에서 목표물 위치 추정 문제나 추적 및 동기화에 이르기까지 다방면에서 쓰이고 있다. 시간 지연을 구하는 방법에서는 두 수신 신호 사이의 상호 상관을 이용한 방법이 대표적이다. 그러나 이 방법은 수신 음향 센서에 잡음이 부과 되는 것에 충분한 고려가 없었다. 본 논문은 수신 음향 센서에 모두 잡음이 부과된 경우를 고려한 새로운 시간 지연 추정 방법을 제안한다. 기존의 일반 상호 상관법과 적응 고유치 분석법과 비교를 통해서 새로 제안한 알고리즘이 유색 신호에 부가된 가우시안 잡음환경에서 우수성이 있음을 확인한다.
압축센싱(Compressed Sensing)은 선형 역문제(inverse problem)를 다루고 있으며, 그 이론적 연구결과는 관련 분야에 많은 영향을 주어 놀랄 만한 연구성과를 발표하였다. 그러나 압축센싱을 실제 환경에 적용하기 위해서는 두 가지 중요한 문제가 남아 있다. 하나는 실시간에 가까운 복원 성능이 보장되어야 하며, 다른 하나는 신호가 희소성을 갖도록 전처리가 가능해야 한다는 점이다. 이에 대한 문제들을 해결하고자 딥러닝(deep learning) 기술을 활용한 압축센싱 신호 복원방법이 최근에 등장하였다. 본 논문에서는 딥러닝 기반의 압축센싱 신호 복원방법을 고찰하고 최신 연구결과를 비교 분석하고자 한다. 관련 연구결과에서는 실시간에 가까운 복원 시간에 도달하였으며, 기존 복원방법 대비 더 우수한 복원 성능을 보여 주었다. 최근 연구에서 보여준 딥러닝을 활용한 압축센싱 신호 복원방법은 압축센싱의 활용가치를 더욱 높일 뿐만 아니라 신호처리와 통신분야에서 크게 활용될 수 있을 것으로 기대된다.
수중 표적의 기어박스 및 보조 장치 등으로부터 방사되는 토널 신호의 주파수 성분은 처리하고자 하는 주파수 대역에 비해 상대적으로 적어 희소신호로 모델링될 수 있다. 근래에 토널 신호의 주파수 희소성을 이용하여 빠른 시간 내에 적은 수의 관측치로 토널 주파수를 복원하는 압축센싱 기반의 연구가 활발히 진행되고 있다. 기존의 방법들은 이산(discrete) 주파수 영역에서 주파수를 검출하기 때문에 이산화로 인한 basis mismatch error가 불가피하다. 본 논문에서는 atomic norm minimization을 이용하여 적은 수의 관측치로 연속(continuous) 주파수 영역에서 토널 주파수를 검출하는 기법을 제안한다. 모의실험을 통해 기존의 기법들에 비해 제안하는 기법의 성능이 정확성과 평균제곱오차 측면에서 우수함을 확인하였다.
음원 위치 추정은 여러 방면에서 쓰임이 있는 응용 기술이다. 음원의 위치를 추정하기 위한 기본 기법 중에는 시간 지연 추정 기법이 있다. 이 기법에선 음원의 위치를 추정하기 위해서 두 개 또는 그 이상의 수신기에 들어오는 신호간의 상대적 시간 지연을 알아내야 한다. 시간 지연 추정 기법에는 일반화 된 상호 상관(Generalized Cross-Correlation, GCC) 대표적이지만, 정준형 상관 분석(Canonical Correlation Analysis, CCA)을 이용한 방법도 있다. 본 논문에서는 시간 지연 추정용 정준형 상관 분석의 고유벡터의 희소성을 이용하기 위해 새로운 알고리즘을 제안한다. 이를 위해서 로그-합(log-sum) 정규화를 이용한다. 본 논문에서는 서로 다른 여러 신호 대 잡음비 환경 하에서 비교 모의실험을 하였고, 이 비교 실험을 통하여 얻는 데이터를 통해서 제안한 새 정준형 상관 분석 기반 알고리즘이 이전의 정준형 상관분석 기반 알고리즘이나 기존 GCC보다 더 우수하다는 것을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.